簡易檢索 / 詳目顯示

研究生: 陳暐豪
Chen, Wei-Hao
論文名稱: 室溫合成無機鈣鈦礦CsPbBr3應用於電阻式記憶體之特性研究
Room temperature synthesis of Inorganic perovskite CsPbBr3 for applications of resistive random access memory(RRAM)
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 46
中文關鍵詞: 鈣鈦礦電阻式記憶體UV光
英文關鍵詞: Perovskite, Resistance Random Access Memory(RRAM), UV Light
DOI URL: http://doi.org/10.6345/THE.NTNU.EPST.013.2018.E08
論文種類: 學術論文
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無機鈣鈦礦CsPbBr3是一種半導體材料,不僅具有優異的半導體材料特性,還具有良好的離子導電性、良好的光吸收率與成本低等優點,這些特性使得這類材料在電阻式記憶體RRAM相當具有潛力。
    本論文使用室溫反溶劑合成的方法來合成無機鈣鈦礦,並使用旋轉塗佈的方法應用於RRAM上Metal/Insulator/Metal三明治結構中的絕緣層,其中會透過有修復缺陷的鈣鈦礦薄膜與無修復缺陷的鈣鈦礦薄膜的電性量測進行比較,由電性量測結果發現無修復的鈣鈦礦薄膜,Set電壓約0.6V,Reset電壓約-1.9V;經過修復的鈣鈦礦薄膜為Set電壓約0.8V,Reset電壓約-2.6V,Set、Reset電壓都有增加的現象,但電壓電流特性曲線較為穩定。此外,將未修復的Ag/SiO2/CsPbBr3/SiO2/ITO樣品照射UV光,並測量低阻態與高組態時的電流變化,結果發現照射UV光時會產生光電流,造成低組態與高組態時的電流都會提升。

    Inorganic perovskite CsPbBr3 is a semiconductor material that not only has excellent semiconductor material properties, but also has good ionic conductivity, good light absorption and low cost. All these properties make these types of materials have good potential for Resistance Random Access Memory (RRAM).
    In this experiment, the inorganic perovskite was synthesized by the method of anti-solvent synthesis at room temperature, and used the spin coating method to form the perovskite thin film for the insulating layer of the Metal/Insulator/Metal sandwich structure on RRAM. Also, we repaired the defect of perovskite thin film and compared with the non-repaired perovskite thin film. For the non-repaired perovskite thin film the set voltage was 0.6 V, and the Reset voltage was -1.9 V. For the repaired perovskite thin film the Set voltage was 0.8 V, and the Reset voltage is -2.6 V. We found that after repairing process the Set and Reset voltages all become larger than non-repaired, but the I-V curve is more stable than non-repaired. In addition, the non-repaired Ag/SiO3/CsPbBr3/SiO2/ITO samples were irradiated with UV light, and the current changes during low-resistance state LRS and high-resistance state HRS were measured. It was found that photocurrent was generated when UV light was irradiated, and resulting current increase in both HRS and LRS.

    致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 序論 1 1.1 前言 1 1.2 研究動機 1 1.3 文獻回顧 2 第二章 實驗原理 3 2.1 記憶體簡介 3 2.2 次世代記憶體 4 2.2.1 相變化記憶體 4 2.2.2 鐵電記憶體 6 2.2.3 磁阻式記憶體 7 2.2.4 電阻式記憶體 7 2.3 電阻轉換特性與機制介紹 9 2.3.1 電阻絲理論(Filament Theory) 10 2.4 電流傳導機制介紹 17 2.4.1 蕭特基發射(Schottky Emission) 17 2.4.2 穿隧傳導(Tunneling Conduction) 19 2.4.3 歐姆傳導(Ohmic Conduction) 19 2.4.4 空間電荷限制電流(Space-Change-Limited-Current Conduction,SCLC) 20 2.4.5 普爾-法蘭克發射(Poole-Frenkel Emission) 21 2.5 鈣鈦礦簡介 22 第三章 實驗過程與設備 23 3.1 元件製作流程 23 3.2 ITO透明導電玻璃清洗流程 24 3.3 鈣鈦礦量子點合成 24 3.4 薄膜濺鍍 27 3.4.1 二氧化矽絕緣層濺鍍 28 3.4.2 上電極銀濺鍍 29 3.5 鈣鈦礦成膜 29 3.6 鈣鈦礦薄膜缺陷修復 30 3.7 半導體電性量測系統 31 第四章 結果與討論 32 4.1 鈣鈦礦的材料特性分析 32 4.1.1 鈣鈦礦的掃描式電子顯微鏡、螢光光譜與XRD分析 32 4.2 Ag/SiO2/CsPbBr3/SiO2/ITO RRAM電性量測分析 35 4.2.1 Forming Process 35 4.2.2 Reset與Set Process 36 4.2.3 RRAM Retention Time量測 38 4.2.4 RRAM 電流機制擬合 39 4.2.5 照射UV光對元件電流影響 40 4.3 鈣鈦礦薄膜缺陷修復後RRAM電性量測分析 41 4.3.1 Forming Process 41 4.3.2 Reset與Set Process 42 第五章 結論 43 第六章 參考文獻 44

    1. Dinghua Bao, Transition metal oxide thin films for nonvolatile resistive random access memory application., Journal of Ceramic of Japan, pp. 929-934, 117(9), (2009)
    2. C.Y. Lin et al., Current status of resistive nonvolatile memories., Journal of Electroceramics, vol.21, no.1, pp. 61-66, (2008)
    3. Debashis Panda et al., Perovskite Oxides as Resistive Switching Memories:A Review., Ferroelectrics, 471, pp. 23-64, (2014)
    4. Bohee Hwang et al., Lead-free, air-stable hybrid organic-inorganic perovskite resistive switching memory with ultrafast switching and multilevel data storage., Nanoscale, 10, pp. 8578-8584, (2018)
    5. Chungwan Gu et al., Flexible Hybrid Organic-Inorganic Perovskite Memory., ACS Nano.,10, pp. 5413-5418, (2016)
    6. Dongjue Liu et al., Flexible All-Inorganic Perovskite CsPbBr3 Nonvolatile Memory Device., ACS Appl. Mater. Interfaces, 9, pp.6171-6176, (2017)
    7. Yan Wang et al., Synergies of Electrochemical Metallization and Valance Change in All-Inorganic Perovskite Quantum Dots for Resistive Switching. Adv. Mater., 30, 1800327,(2018)
    8. H.-S. Philip Wong et al., Phase Change Memory. Proceeding of IEEE, pp. 2201-2227, vol. 98, no. 12, (2010)
    9. 李明道, 各式記憶體簡介. Nano Communication, vol. 22, no. 4, (2015)
    10. D. A. Buck, Ferroelectrics for Digital Information Storage and Switching, Massachusetts Institute of Technology. Dept. of Electrical Engineering, Master Thesis, (1952)
    11. L. Wang et al., Overview of Probe-based Storage Technologies. Nanoscale Research Letters, 11:342, (2016)
    12. 葉林秀, 李佳謀, 徐明豐, 吳德和, 磁阻式隨機存取記憶體技術的發展—現在與未來. 物理雙月刊, 26捲, pp. 607, (2004)
    13. T. W. Hickmott, Low-Frequency Negative Resistance in Thin Anodic Oxide Films, J. Appl. Phys., 33, no. 9, 2669~2682, (1962)
    14. Teciano Perez et al., Non-Volatile Memory:Emerging Technologies And Their Impacts on Memory Systems. (2010)
    15. W. W. Zhuang et al., Novell Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM). IEDM Tech, Dig, pp. 193-196, (2002)
    16. Rainer Waser er al., Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater., 21, pp. 2632-2663, (2009)
    17. T. C. Chang et al., Resistance Random Access Memory. Materials Today, 19, no. 5, (2016)
    18. Yongsung Ji et al., Flexible Nanoporous WO3-x Nonvolatile Memory Device. ACS Nano., 10, pp.7698-7603, (2016)
    19. Haitao Sun et al., Direct Observation of Conversion Between Threshold Switching and Memory Switching Induce by Conductive Filament Morphology. Adv. Mater., 24, pp.5679-5686, (2014)
    20. Ye Wu et al., Capping CsPbBr3 with Zno to improve performance and stability of perovskite memristors. Nano Res., 10(5), pp.1584-1594, (2017)
    21. Shimeng Yu et al., HfOx-Based Vertical Resistive Switching Random Access Memory Suitable for Bit-Cost-Effective Three-Dimensional Cross-Point Architecture. Acs Nano., 7(3), pp2320-2325, (2013)
    22. Handan Yildirim et al., Mechanisitc Analysis of Oxygen Vacancy-Driven Conductive Filament Formation in Resistive Random Access Memory Metal/NiO/Metal Structures. ACS Appl. Mater. Interfaces., 10, pp.9802-9816, (2018)
    23. N. Xu et al., A unified physical model of switching behavior in oxide-based RRAM. Symposium on VLSI Technology Digest of Technical Papers, pp.100-101, (2008)
    24. Jung Bin Yun et al., Random and localized resistive switching observation in Pt/NiO/Pt. Phys. Status Solidi, 1, no,6, pp.280-282, (2007)
    25. Ee Wah Lim et al., Conduction Mechanism of Valence Change Resistive Switching Memory:A Survey. Electronics, 4(3), pp.586-613, (2015)
    26. Shiqiang Luo et al., Recent progress in organic-inorganic halide perovskite solar cells: mechanisms and materials design. J.Name., 00, pp.1, (2013)
    27. Xiaoming Li et al., Healing All-Inorganic Perovskite Film via Recyclable Dissolution-Recrystallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability. Adv. Funct. Mater., 26, pp.5903-5912, (2016)

    無法下載圖示 本全文未授權公開
    QR CODE