簡易檢索 / 詳目顯示

研究生: 方瑞澤
Fang, Rui-Ze
論文名稱: 以非監督式學習之類神經網路進行面向導向之意見摘要
Unsupervised Aspect-aware Opinion Summarization by Neural Network
指導教授: 柯佳伶
Koh, Jia-Ling
口試委員: 吳宜鴻
HONG, WU-YI
徐嘉連
LIAN, XU-JIA
柯佳伶
Koh, Jia-Ling
口試日期: 2023/01/19
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 58
中文關鍵詞: 面向擷取摘要生成意見摘要
英文關鍵詞: Aspect extraction, Summary generation, Opinion summarization
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300249
論文種類: 學術論文
相關次數: 點閱:101下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 評論意見摘要的目的是由使用者對商品的多篇評論內容,生成融合多篇評論意見的精簡文字內容。為了避免監督式學習訓練資料集的標示成本,且使意見摘要結果聚焦於評論中表達的商品面向意見。本論文擴展Meansum模型,提出以非監督式學習概念為基礎之面向句擷取-意見摘要生成兩階段摘要生成系統。本系統在第一階段先以非面向句濾除的處理,將評論中的雜訊句篩除,再從留下的評論句子學習轉換到面向特徵向量,挑選出具有面向的可能性夠高之句子組成簡要的評論文本。在第二階段,採用Meansum架構作為摘要生成器時,訓練及測試評論資料皆先經過第一階段的處理。在Amazon不同商品類別評論資料集上之實驗結果顯示:透過本論文提出的非面向句濾除方法,以挑選過的評論句再進行面向句編碼器的訓練,與直接將評論句輸入進行訓練的面向句編碼器相比,擷取Precision的平均提升幅度為16%。而對於多評論之摘要生成,透過兩階段作法,在生成的摘要中涵蓋評論中重要面向的指標分數(Aspect_weight),較Meansum的生成效果增進幅度至少在14%以上。

    The purpose of opinion summarization is to generate a concise text content from multiple reviews of users on a product. The challenges of this task include avoiding the labeling cost of training data for supervised learning and making opinion summarization focus on product aspects expressed in the reviews. This thesis extended the Meansum model and proposed a two-stage method for summarizing multiple reviews, which includes sentence extraction from reviews and summary generation from multiple documents both by unsupervised learning. In the first stage, a non-aspect sentence filtering process is designed to filter out the noisy sentences in the reviews. Then the remaining sentences are used to train an aspect encoder, which aims to encode a sentence into a feature vector of aspects. After that, the sentences in a review with a high possibility on a certain aspect are selected to form a brief review. In the second stage, before performing the Meansum model as the summary generator, the training and test review data are processed by the first stage. Performance evaluation was performed on Amazon’s review datasets with various product categories. The results showed that, by using the proposed non-aspect sentence filtering method to select the remaining review sentences for training the aspect encoder, the Precision of identifying aspect sentence achieve 16% improvement on various category data in average than the aspect encoder without using the filtering method. The result of the proposed two-stage approach for opinion summarization of multiple reviews gets better Aspect_weight on the generated summaries, which achieves 14% improvement than the score of Meansum.

    第一章 緒論 1 第一節 研究動機與目的 1 第一節 論文方法 4 第一節 論文架構 5 第二章 文獻探討 6 第一節 單文本摘要任務 6 第二節 多文本摘要任務 8 第三節 意見摘要 10 第四節 面向擷取方法 14 第三章 非監督式兩階段評論意見摘要生成系統 16 第一節 問題定義 16 第二節 AESG兩階段意見摘要生成系統 17 第三節 面向句擷取器 18 第三之一節 非面向句濾除 19 第三之二節 面向句編碼器 20 第三之三節 句子隱含面向標註 23 第四節 摘要生成器 24 第四之一節 編碼階段與解碼階段 25 第四之二節 摘要生成器損失函數 26 第四章 實驗評估與探討 28 第一節 資料集與模型參數設定 28 第二節 評估指標 31 第三節 模型的效能評估 37 第五章 結論 53 參考文獻 55 附錄1 各類別之面向關鍵字 vii 附錄2 產品ID: B004D3CFYE 之標示集中10篇評論 xiii

    [1] Stefanos Angelidis and Mirella Lapata. 2018. Summarizing opinions: Aspect extraction meets sentiment prediction and they are both weakly supervised. In EMNLP .
    [2] Trung Bui, Arman Cohan, Walter Chang, Franck Dernoncourt , Nazli Goharian , Doo Soon Kim and Seokhwan Kim. 2018. A discourse-aware attention model for ab-stractive summarization of long documents. In NAACL-HLT 2018.
    [3] Deng Cai, Xiaozhong Liu, Haojie Pan, Rui Wang, Rongqin Yang and Xin Zhou. 2020. Large scale abstractive multi-review summarization (lsars) via aspect align-ment. In SIGIR. pp. 2337–2346.
    [4] Ziqiang Cao,Wenjie Li, Sujian Li and Furu Wei. 2017. Improving multi-document summarization via text classification. In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI’17). pp. 3053–3059.
    [5] Giuseppe Carenini, Raymond Ng, and Adam Pauls. 2006. Multi-Document Summarization of Evaluative Text. In Proc. of the Conf. of the European Chapter of the Association for Computational Linguistics.
    [6] Zhumin Chen, Qintong Li,Piji Li, Xinyi Li, Zhaochun Ren and Maarten de Rijke. 2021. Abstractive Opinion Tagging. In Proceedings of the 14th ACM Interna-tional Conference on Web Search and Data Mining. pp. 337–345.
    [7] Eric Chu and Peter J. Liu. 2019. MeanSum: A neural model for unsupervised multi-document abstractive summarization. In Proceedings of the 36th International Conference on Machine Learning (ICML’19). pp. 1223–1232.
    [8] Maximin Coavoux, Hady Elsahar and Matthias Gallé. 2019. Unsupervised as-pect-based multi-document abstractive summarization. In Proceedings of the 2nd Workshop on New Frontiers in Summarization (NFiS’19). pp. 42–47.
    [9] Maximin Coavoux, Hady Elsahar, Matthias Gallé and Jos Rozen. 2020. Self-supervised and controlled multi-document opinion summarization. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics (EACL’20).
    [10] Daniel Dahlmeier, Ruidan He, Wee Sun Lee and Hwee Tou Ng. 2017. An unsu-pervised neural attention model for aspect extraction. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL 2017).
    [11] Christopher D. Manning, Peter J. Liu and Abigail See. 2017.Get to the point: Summarization with pointer-generator networks. In Annual Meeting of the Associa-tion for Computational Linguistic s (Volume 1: Long Papers), pp. 1073–1083.
    [12] Zhiqiang Gao, Qian Liu, Bing Liu and Yuanlin Zhang. 2015. Automated rule selection for aspect extraction in opinion mining. In Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pp. 1291–1297. AAAI Press.
    [13] Ben Goodrich, Peter J. Liu, Lukasz Kaiser, Etienne Pot, Mohammad Saleh, Ryan Sepassi and Noam Shazeer. 2018. Generating Wikipedia by summarizing long sequences. In Proceedings of ICLR (2018).
    [14] Minqing Hu and Bing Liu. 2004. Mining and Summarizing Customer Reviews. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, pp. 168–177.
    [15] Hanqi Jin, Tianming Wang and Xiaojun Wan. 2020. Multi-granularity interac-tion network for extractive and abstractive multi-document summarization. In Pro-ceedings of the 58th Annual Meeting of the Association for Computational Linguis-tics (ACL’20). pp. 6244–6254.
    [16] Meng Joo Er, Mahardhika Pratama, Yong Zhang and Rui Zhao. 2016. Mul-tiview convolutional neural networks for multidocument extractive summarization. In IEEE Transactions on Cybernetics 47, 10, pp. 3230–3242.
    [17] Reinald Kim Amplayo and Mirella Lapata. 2021. Informative and controllable opinion summarization. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics (EACL’21). pp. 2662–2672.
    [18] Reinald Kim Amplayo, Stefanos Angelidis and Mirella Lapata. 2021. Aspect-controllable opinion summarization. In Proceedings of the 2021 Conference on Em-pirical Methods in Natural Language Processing, pp. 6578–6593, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.
    [19] Irene Li, Suyi Li, Alexander R. Fabbri, Dragomir R. Radev and Tianwei She. 2019. Multi-news: A large-scale multi-document summarization dataset and abstrac-tive hierarchical model. In Proceedings of the 57th Conference of the Association for Computational Linguistics (ACL’19). pp. 1074–1084.
    [20] Wang Ling and Lu Wang. 2016. Neural network-based abstract generation for opinions and arguments. In Proceedings of the 2016 Conference of the North Ameri-can Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 47–57.
    [21] Yang Liu and Mirella Lapata. 2019. Hierarchical transformers for multi-document summarization. In Proceedings of the 57th Conference of the Association for Computational Linguistics (ACL’19). pp. 5070–5081.
    [22] Bing Liu, Lei Shu and Hu Xu. 2017. Lifelong learning CRF for supervised as-pect extraction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 148–154, Vancouver, Can-ada. Association for Computational Linguistics.
    [23] Ramesh Nallapati, Feifei Zhai and Bowen Zhou. 2017. SummaRuNNer: A of recur-rent neural network based sequence model for extractive summarization documents. Paper presented at the Thirty-First AAAI Conference on Artificial Intelligence (AAAI17).
    [24] Thierry Poibeau and Horacio Saggion. 2013. Automatic text summarization: Past, present and future. In Multi-source, Multilingual Information Extraction and Summarization. Springer, pp. 3–21.

    下載圖示
    QR CODE