研究生: |
施秉宏 Shih, Ping-Hung |
---|---|
論文名稱: |
創新電動車輛之模組化線控底盤機構暨雙電力系統設計與實作驗證 Innovative Modular Wire-controlled Chassis and Dual Power System Design and Implementation Verification of Electric Vehicles |
指導教授: |
洪翊軒
Hung, Yi-Hsuan |
口試委員: |
洪翊軒
Hung, Yi Hsuan 吳建勳 Wu, Chien Hsun 陳瑄易 Chen, Syuan Yi |
口試日期: | 2021/10/02 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 162 |
中文關鍵詞: | 模組化機構 、線控底盤 、多電力電動車 、鋰電池 、燃料電池 、系統整合 |
英文關鍵詞: | modular mechanism, wire-controlled chassis, multi-electric electric vehicle, lithium battery, fuel cell, system integration |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202101780 |
論文種類: | 學術論文 |
相關次數: | 點閱:126 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為一電動自駕車之模組化線控底盤機構與雙電力系統實做驗 證之研究。主要分為四個部分: (1) 模組化線控底盤系統、(2)模組化雙 電力系統與被動式電力分配技術、 (3)雙電力線控底盤電動車之模組化機 電系統整合、 (4)實車於園區道路運行測試。
本研究使用之電動車為長 2.3 公尺、寬 1.2 公尺的純電車輛,搭載 36V 3000W 的直流馬達。於本研究中為透過此移動載具完成模組化之線控底盤 與雙電力系統的搭建並與實作完成後進行實車運行測試。於本研究中將以 模組化系統之設計與實作為核心,主要訴求為透過模組化技術使得車輛得 以快速轉換運用新能源科技與實現被自動駕駛的可能。
關於自駕車之模組化線控底盤機構之設計與實作,為研製一種新型式 自駕電動車輛的模組化線控底盤系統。本研究由電動車為基礎,探討線控 底盤系統設計。採用線控底盤之電動車以縱向與橫向行駛為區分,主要有 三大部分:轉向、加速與減速行駛,分別以線控轉向、加速與減速模組運 論文名稱: 創新電動車輛之模組化線控底 盤機構暨雙電力系統設計與實 作驗證 頁 數: 162 頁 校名: 國立臺灣師範大學 系所名: 工業教育學系碩士班-能源應用 及車輛技術組 畢業時間: 109 學年度第 2 學期 學 位: 碩 士 畢業生: 施秉宏 指導教授: 洪翊軒 關鍵詞: 模組化機構、線控底盤、多電力電動車、鋰電池、燃料電池、 系統整合 iii 行以達成目標功能。於各機構搭建完成後進行模組化施工,同時各模組間 透過系統整合使本研究車輛可由一控制手柄進行車輛之全部行駛控制,並 於最終成功完成彎道轉向、迴轉、急加速與緊急煞車等多種不同行駛目標, 更可以保持平均時速 7 公里/小時以上於園區連續繞行超過 1.5 小時。
本研究的另一項重點為模組化之雙電力系統設計與實作驗證,為透過 鋰電池與氫燃料電池進行雙電力系統結合,補足不同的車輛行駛狀況下的 電力需求並增進多樣化電力運用。有別於一般氫燃料電池電動車,本研究 中將採用模組化技術將不同電力源製作成單一模組,並且可以快速安裝於 實車上並驅使車輛移動;亦可以在不破壞車輛機構、線路或影響車輛安全 的前提下,使一般純電池電動車得以進行電力源轉換,依照不同使用需求 完成全新的供電系統換裝。於本研究中考量當前使用需求,運用鋰電池反 應迅速與燃料電池能量補充快速的特性,以 36V 80Ah 的鋰電池作為主要 電力源,並以輸出功率達 1kW 的燃料電池作為輔助電力源。透過被動式 電力分配技術將模組化後的雙電力系統進行整合,於實車道路運行中得以 完成最高時速超過 20 公里/小時的急加速行駛,於園區繞行過程亦可獲得 最高 60A 以上的總電流輸出,更具有近 11 公里的續航里程。
經實車道路運行測試後可證明本研究之模組化線控底盤機構與雙電力系統皆可完整實現其預期功能,並完成指定行駛目標。
This research is a research to verify the implementation of a modular wire-controlled chassis and multi-power system for an electric autonomous vehicles. This research is mainly divided into three parts: (1) Modular wire-controlled chassis system, (2) Modular multi-power passive energy distribution system, (3) Multi-power wire-controlled chassis electric vehicle electromechanical system integration.
Regarding the design and implementation of a modular wire-controlled chassis for autonomous vehicles, it aims to develop a new type of modular wire-controlled chassis system for autonomous electric vehicles. This research is based on electric vehicles and discusses the design of a wire-controlled chassis system. The electric vehicle used in this study is a pure electric vehicle with a length of 2.3 meters and a width of 1.2 meters, using a 36V 3000W DC motor. Electric vehicles with a wire-controlled chassis are mainly divided into three parts: power, steering and braking. Through system integration, a control handle will complete the vehicle driving control.
Another focus of this research is the modular dual power system. Through the combination of dual power systems, it can supplement the energy demand under different vehicle driving conditions and enhance the diversified power utilization.
[1] Milan Todorovic, Milan Simica, ArunKumara (2017), “Managing Transition to Electrical and Autonomous Vehicles,” Procedia Computer Science, Vol. 112, pp. 2335-2344.
[2] Björn Schünemann, Jan W. Wedel, Ilja Radusch (2010), “V2X-Based Traffic Congestion Recognition and Avoidance,” Tamkang Institute of Technology, Vol. 13, pp. 63-70.
[3] Lu Ximin (2015), “An Introduction of Electric Vehicle Technologies,” Journal of Refrigeration Air Conditioning and Energy Technology, Vol. 94, pp. 72-81.
[4] Dang Xiao-Xu, Zhou Yong, Wang Yao-Wen (2008), “Statistics and Countermeasures for Road Traffic Accident in China,” Agricultural equipment and vehicle engineering, Vol. 10, pp. 38-41.
[5] Xiao Ruisheng (2021), “Automotive Component Industry Development Issues in the Post-Pandemic Period,” Machinery Industry Magazine, Vol. 454, pp. 37-42.
[6] 韓學中,"智慧型伸縮電動車之結構設計與實作驗證”,國立臺灣師範大學,碩士學位論文,106年。
[7] 周子正,"三電力源電動車之主動式先進能量管理與平台實作驗證” ,國立臺灣師範大學,碩士學位論文,106年。
[8] Oliver Dlugoscha, Tobias Brandtb, Dirk Neumanna (2020), “Combining analytics and simulation methods to assess the impact of shared, autonomous electric vehicles on sustainable urban mobility,” Information & Management, No.103285.
[9] Rau Dennis-Hsiko,"Automotive Industry in Transition through Autonomous Driving, connected car and smart mobility – a field study of a chinese company”,Tatung University,Thesis,2018。
[10] 簡明溫 (2005), “模組化底盤之設計關鍵、工程發展與未來整合趨勢展望,” 機械工程, Vol. 253, pp. 28-38.
[11] MIH Consortium, Mobility in Harmony.
[12] TNGA, Toyota New Global Architecture.
[13] 薛乃綺 (2007), “汽車產業模組化平臺發展趨勢,” ITIS產業報告, 「2007我國製造業現況與趨勢」論文集.
[14] ARTC 企劃推廣處 (2019), “技術大解密!車輛中心自駕車多年心法首度公開,” ARTC電子報, 知識庫.
[15] 林政助,"線控煞車系統測試平台設計與實驗”,大葉大學,碩士學位論文,98年。
[16] 吳承諭,"車輛具有線控轉向系統之四輪轉向研究與發展”,大葉大學,碩士學位論文,97年。
[17] Lai I-Ming,"The Control Design of Steer-by-Wire System via FlexRay”, National Chiao Tung University,Thesis,2008。
[18] Kang Guyan, Tsai Ing-wen (2020), “The Application of Fuel Cell Technology for Drones,” Machinery Industry Magazine, Vol. 448, pp. 42-47.
[19] Eduardo Lopez Gonzalez, Jaime Saenz Cuesta, Francisco J. Vivas Fernandez, Fernando Isorna Llerena, Miguel A. Ridao Carlini, Carlos Bordons, Emili Hernandez, Alberto Elfes (2018), “Experimental evaluation of a passive fuel cell/ battery hybrid power system for an unmanned ground vehicle,” Hydrogen Energy, Vol. 44, pp. 12772-12782.
[20] M.A.H.A. Ssomad, R.M. Hudzari, M.N.A. Noordin, S.M. Sapuan, N. Norhayati, A.J. Soran (2013), “Finite Element Analysis for Stress Distribution of Hand Tool Harvester,” Procedia Engineering, Vol. 68, pp. 219-224.
[21] 吳光亮,"Solidworks Simulation 有限元素分析軟體檢視材質與厚度對眼鏡機械性質的影響” ,崑山科技大學,碩士學位論文,104年。
[22] 林立璿,"車輛線控轉向系統研究與實作” ,大葉大學,碩士學位論文,97年。
[23] 林俊宏,"鋰離子二次單電池品質安全試驗之探討” ,國立虎尾科技大學,碩士學位論文,101年。
[24] Texas Instruments, Product, BQ40Z50 1-4 series Li-ion battery pack manager | battery fuel (gas) gauge.
[25] 周先勤,"應用於電動輔助轉向系統最佳頻寬搜索等效模糊邏輯控制器設計” ,天主教輔仁大學,碩士學位論文,110年。
[26] T-Global Tech, Product, 127060-40.
[27] Chao Huang, Fazel Naghdy, Haiping Du, Hailong Huang (2019), “Fault tolerant steer-by-wire systems: An overview,” Annual Reviews in Control, Vol. 47, pp. 98-111.
[28] Ryouhei Hayama, Masayasu Higashi, Sadahiro Kawahara, Shirou Nakano, Hiromitsu Kumamoto (2010), “Fault-tolerant automobile steering based on diversity of steer-by-wire, braking and acceleration,” Reliability Engineering & System Safety, Vol. 95, pp. 10-17.
[29] Xiang Chen, Lingtao Wei, Xiangyu Wang, Liang Li, Qiong Wu, Lingyun Xiao (2021), “Hierarchical cooperative control of anti-lock braking and energy regeneration for electromechanical brake-by-wire system,” Mechanical Systems and Signal Processing, Vol. 159, pp. 107796.
[30] Jinhua Zhang, Weichao Sun, Zhiyuan Liu, Ming Zeng (2019), “Comfort braking control for brake-by-wire vehicles,” Mechanical Systems and Signal Processing, Vol. 133, pp. 106255.
[31] Peter Burggräf, Matthias Dannapfel, Fabian Hehl, Miriam Wenzl, Bernhard Freyer (2019), “Data on the current state of modular systems in a highly dynamic environment: Empirical analyses in the manufacturing industry and automotive industry of Germany,” Data in Brief, Vol. 27, pp. 104552.
[32] J.Paralikas, A.Fysikopoulos, J.Pandremenos, G.Chryssolouris (2011), “Product modularity and assembly systems: An automotive case study,” CIRP Annals, Vol. 60, pp. 165-168.
[33] Anna Cabigiosu, Francesco Zirpoli, Arnaldo Camuffo (2013), “Modularity, interfaces definition and the integration of external sources of innovation in the automotive industry,” Research Policy, Vol. 42, pp. 662-675.
[34] Jakob Weber, Markus Stäbler, Sebastian Thielen, Kristin Paetzold (2016), “Modularity as Key Enabler for Scalability of Final Assembly Units in the Automotive Sector,” Procedia CIRP, Vol. 57, pp. 224-228.
[35] Amy J.C.Trappey, David W.Hsiao (2008), “Applying collaborative design and modularized assembly for automotive ODM supply chain integration,” Computers in Industry, Vol. 59, pp. 277-287.
[36] Gundolf Kopp, Elmar Beeh, Roland Schšll, Alexander Kobilke, Philipp Stra§burger, Michael Krieschera (2012), “New Lightweight Structures for Advanced Automotive Vehicles–Safe and Modular,” Procedia - Social and Behavioral Sciences, Vol. 48, pp. 350-362.
[37] Andreasen SJ, Ashworth L, Menjon Rem on IN, K ær SK (2008), “Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle,” Hydrogen Energy, Vol. 33, pp. 7137-7145.
[38] Bernard J, Hofer M, Hannesen U, Toth A, Tsukada A, Bu¨ chi FN (2011), “Fuel cell/battery passive hybrid power source for electric powertrains,” J Power Sources, Vol. 196, pp. 5867-5872.
[39] Chen Y-S, Lin S-M, Hong B-S (2013), “Experimental study on a passive fuel cell/battery hybrid power system,” Energies, Vol. 6, pp. 6413-6422.
[40] Samsun RC, Krupp C, Baltzer S, Gnorich B, Peters R, € Stolten D (2016), “A battery-fuel cell hybrid auxiliary power unit for trucks: analysis of direct and indirect hybrid configurations,” Energy Convers Manag, Vol. 127, pp. 312-323.