研究生: |
潘敬揚 Pan, Ching-Yang |
---|---|
論文名稱: |
氮化鎵高電子遷移率電晶體中表面陷阱誘導閘極漏電的低溫溫度依賴性及其滯後現象之研究 Cryogenic Temperature Dependence and Hysteresis of Surface-Trap-Induced Gate Leakage in GaN High Electron Mobility Transistors |
指導教授: |
江佩勳
Jiang, Pei-hsun |
口試委員: |
江佩勳
Jiang, Pei-hsun 陳美杏 Chen, Mei-Hsin 趙宇強 Chao, Yu-Chiang |
口試日期: | 2024/06/27 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 氮化鎵 、高載子遷移率電晶體 、閘極漏電流 、表面陷阱 、低溫 、滯後 |
英文關鍵詞: | GaN, HEMT, gate leakage, surface traps, cryogenic, hysteresis |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400981 |
論文種類: | 學術論文 |
相關次數: | 點閱:82 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究聚焦於蕭特基閘極氮化鎵高電子遷移率電晶體中表面陷阱輔助的閘極漏電現象,並分析其在 1.5 K 到 300 K 溫度範圍中的行為。在小的閘極電壓下,觀察到表面漏電由二維變程跳躍(two-dimensional variable-range hopping)主導。在較高的負閘極偏壓下,與電場相關的普爾—法蘭克發射(Poole–Frenkel emission)成為 200 K 以上的主要表面漏電機制。由於凍結陷阱效應(frozen-trap effect)隨著降溫而增強,低溫抑制了普爾—法蘭克發射,使得陷阱輔助穿隧(trap-assisted tunneling)變得明顯,逐漸成為主要的表面漏電機制。根據普爾—法蘭克發射模型的擬合結果,得到陷阱態的能階為 0.65 eV。元件亦展現出閘極漏電流的滯後行為,即表面漏電流不僅受到閘極電壓影響,也受其掃描方向及速率影響。此外,閘極漏電流滯後行為有明顯的溫度依賴性:在高溫下,由普爾—法蘭克發射引發的漏電流滯後有順時針的迴線,並且幾乎不受掃描閘極電壓的速率影響;而低溫下,由陷阱輔助穿隧引發的滯後迴線則為逆時針,並且在更高速的閘極電壓掃描下有著更明顯的滯後迴線。更深入地理解這些機制在不同溫度下對元件可靠性的影響,有助於未來用於低溫環境的氮化鎵元件的開發與優化。
This thesis focuses on the surface-trap-induced gate leakage phenomena in Schottky-gate GaN high-electron-mobility transistors (HEMTs), analyzing their behavior across the temperature range of 1.5 to 300 K. At low gate voltages, surface leakage is dominated by two-dimensional variable-range hopping. At higher negative gate biases, Poole–Frenkel emission, associated with electric fields, becomes the dominant surface leakage mechanism above 200 K. The frozen-trap effect is enhanced by decreasing temperature, suppressing Poole–Frenkel emission, and bringing trap-assisted tunneling to the forefront as the main leakage mechanism. Based on the Poole–Frenkel emission model fitting, the trap energy level is determined to be 0.65 eV. The devices also exhibit hysteresis in gate leakage current, which means the gate leakage current is influenced not only by gate voltage but also by sweep direction and speed. Furthermore, the hysteresis behavior shows significant temperature dependence: at high temperatures, hysteresis induced by Poole–Frenkel emission follows a clockwise loop and is nearly unaffected by the sweep speed of gate voltage, whereas at low temperatures, hysteresis due to trap-assisted tunneling follows a counterclockwise loop and becomes more pronounced under faster gate voltage sweeps. A deeper understanding of these mechanisms and their temperature-dependent effects on device reliability will aid in the development and optimization of GaN-based devices for low-temperature applications.
Bautista, J. et al. Cryogenic, X-band and Ka-band InP HEMT based LNAs for the Deep Space Network in 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542) 2 (2001), 2/829–2/842 vol.2.
Schleeh, J., Wadefalk, N., Nilsson, P.-Å., Starski, J. P. & Grahn, J. Cryogenic Broadband Ultra-Low-Noise MMIC LNAs for Radio Astronomy Applications. IEEE Transactions on Microwave Theory and Techniques 61, 871–877 (2013).
Gui, H. et al. Development of High-Power High Switching Frequency Cryogenically Cooled Inverter for Aircraft Applications. IEEE Transactions on Power Electronics 35, 5670–5682 (2020).
Cha, E. et al. A 300-μW Cryogenic HEMT LNA for Quantum Computing in 2020 IEEE/ MTT-S International Microwave Symposium (IMS) (2020), 1299–1302.
Hoo Teo, K. et al. Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects. Journal of Applied Physics 130, 160902 (2021).
Xie, Q. et al. NbN-Gated GaN Transistor Technology for Applications in Quantum Computing Systems in 2021 Symposium on VLSI Technology (2021), 1–2.
Hornibrook, J. M. et al. Cryogenic Control Architecture for Large-Scale Quantum Computing. Phys. Rev. Appl. 3, 024010 (2 2015).
Rajashekara, K. & Akin, B. A review of cryogenic power electronics - status and applications in 2013 International Electric Machines & Drives Conference (2013), 899–904.
Bailey, W. Cryogenic converter for superconducting coil control. English. IET Power Electronics 5, 739–746(7) (6 2012).
Radhakrishnan, K., Dharmarasu, N., Sun, Z., Arulkumaran, S. & Ng, G. I. Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasmaassisted molecular beam epitaxy. Applied Physics Letters 97, 232107 (2010).
Gui, H. et al. Review of Power Electronics Components at Cryogenic Temperatures. IEEE Transactions on Power Electronics 35, 5144–5156 (2020).
Wei, Y., Hossain, M. M. & Mantooth, H. A. Cryogenic Performances Comparisons Among Si MOSFET, SiC MOSFET, Cascode GaN, and GaN Devices. IOP Conference Series: Materials Science and Engineering 1241, 012042 (2022).
Wang, N. et al. Investigation of AlGaN/GaN HEMTs degradation with gate pulse stressing at cryogenic temperature. AIP Advances 7, 095317 (2017).
Li-Yuan, Y. et al. High temperature characteristics of AlGaN/GaN high electron mobility transistors. Chinese Physics B - CHIN PHYS B 20 (2011).
Jeon, D.-Y., Koh, Y., Cho, C.-Y. & Park, K.-H. Impact of temperature-dependent series resistance on the operation of AlGaN/GaN high electron mobility transistors. AIP Advances 11, 115203 (2021).
Gökden, S., Baran, R., Balkan, N. & Mazzucato, S. The effect of interface roughness scattering on low field mobility of 2D electron gas in GaN/AlGaN heterostructure. Physica E: Low-dimensional Systems and Nanostructures 24, 249–256 (2004).
Xu, N. et al. Gate leakage mechanisms in normally off p-GaN/AlGaN/GaN high electron mobility transistors. Applied Physics Letters 113, 152104 (2018).
Mitrofanov, O. & Manfra, M. Poole-Frenkel electron emission from the traps in AlGaN/ GaN transistors. Journal of Applied Physics 95, 6414–6419 (2004).
Hsu, J. W. P. et al. Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes. Applied Physics Letters 78, 1685–1687 (2001).
Hasegawa, H., Inagaki, T., Ootomo, S. & Hashizume, T. Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 21, 1844–1855 (2003).
Jiang, Z. et al. Roles of Hole Trap on Gate Leakage of p-GaN HEMTs at Cryogenic Temperatures. IEEE Electron Device Letters 44, 1612–1615 (2023).
Zheng, X. et al. Study on the conduction mechanism of surface leakage current for AlGaN/ GaN HEMTS under reverse gate bias in 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) (2014), 1–3.
Tan, W. et al. Surface leakage currents in SiN/sub x/ passivated AlGaN/GaN HFETs. IEEE Electron Device Letters 27, 1–3 (2006).
Chen, Y. et al. Study of surface leakage current of AlGaN/GaN high electron mobility transistors. Applied Physics Letters 104, 153509 (2014).
Liu, Z. H., Ng, G. I., Zhou, H., Arulkumaran, S. & Maung, Y. K. T. Reduced surface leakage current and trapping effects in AlGaN/GaN high electron mobility transistors on silicon with SiN/Al2O3 passivation. Applied Physics Letters 98, 113506 (2011).
Zheng, X.-F. et al. Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation*. Chinese Physics B 24, 027302 (2015).
Kotani, J., Tajima, M., Kasai, S. & Hashizume, T. Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN/GaN heterostructures. Applied Physics Letters 91 (2007).
Vetury, R., Zhang, N., Keller, S. & Mishra, U. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Transactions on Electron Devices 48, 560–566 (2001).
Iannaccone, G., Sbrana, C., Morelli, I. & Strangio, S. Power Electronics Based on WideBandgap Semiconductors: Opportunities and Challenges. IEEE Access 9, 139446–139456 (2021).
Jain, H., Rajawat, S. & Agrawal, P. Comparision of wide band gap semiconductors for power electronics applications in 2008 International Conference on Recent Advances in Microwave Theory and Applications (2008), 878–881.
Hornberger, J. et al. Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments. 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720) 4, 2538–2555 Vol.4 (2004).
Cittanti, D., Vico, E. & Bojoi, I. R. New FOM-Based Performance Evaluation of 600/650 V SiC and GaN Semiconductors for Next-Generation EV Drives. IEEE Access 10, 51693– 51707 (2022).
Tan, W. et al. High temperature performance of AlGaN/GaN HEMTs on Si substrates. Solid-State Electronics 50, 511–513 (2006).
Cuerdo, R. et al. High temperature behaviour of GaN HEMT devices on Si(111) and sapphire substrates. physica status solidi c 5, 1971–1973 (2008).
Maier, D. et al. Testing the Temperature Limits of GaN-Based HEMT Devices. IEEE Transactions on Device and Materials Reliability 10, 427–436 (2010).
Buttay, C. et al. State of the Art of High Temperature Power Electronics. Materials Science and Engineering B 176 (2011).
Zekentes, K. et al. in More-than-Moore Devices and Integration for Semiconductors (eds Iacopi, F. & Balestra, F.) 47–104 (Springer International Publishing, Cham, 2023).
Durmus, Y. et al. AlGaN/GaN HEMT with fT:100GHz and fmax:128GHz in 2015 10th European Microwave Integrated Circuits Conference (EuMIC) (2015), 199–202.
Mimura, T., Hiyamizu, S., Fujii, T. & Nanbu, K. A New Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions. Japanese Journal of Applied Physics 19, L225 (1980).
Liu, A.-C. et al. The evolution of manufacturing technology for GaN electronic devices. Micromachines 12, 737 (2021).
He, X.-G., Zhao, D.-G. & Jiang, D.-S. Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression*. Chinese Physics B 24, 067301 (2015).
Smorchkova, I. P. et al. Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy. Journal of Applied Physics 86, 4520–4526 (1999).
Hinz, A. M. et al. Strategy for reliable growth of thin GaN Caps on AlGaN HEMT structures. Journal of Crystal Growth 624, 127420 (2023).
Arulkumaran, S., Egawa, T. & Ishikawa, H. Studies on the influences of i-GaN, n-GaN, p-GaN and InGaN cap layers in AlGaN/GaN high-electron-mobility transistors. Japanese journal of applied physics 44, 2953 (2005).
Sarkar, S., Khade, R. P., DasGupta, A. & DasGupta, N. Effect of GaN cap layer on the performance of AlInN/GaN-based HEMTs. Microelectronic Engineering 258, 111756 (2022).
Kordoš, P., Bernát, J. & Marso, M. Impact of layer structure on performance of unpassivated AlGaN/GaN HEMT. Microelectronics journal 36, 438–441 (2005).
Lenka, T. & Panda, A. Characteristics study of 2DEG transport properties of AlGaN/ GaN and AlGaAs/GaAs-based HEMT. Semiconductors 45, 650–656 (2011).
Ambacher, O. et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. Journal of applied physics 87, 334–344 (2000).
Chen, J.-T. et al. Low thermal resistance of a GaN-on-SiC transistor structure with improved structural properties at the interface. Journal of Crystal Growth 428, 54–58 (2015).
Ozaki, S. et al. First demonstration of X-band AlGaN/GaN high electron mobility transistors using free-standing AlN substrate over 15 W mm−1 output power density. Applied Physics Express 14, 041004 (2021).
Mendes, J. C., Liehr, M. & Li, C. Diamond/GaN HEMTs: Where from and Where to? Materials 15 (2022).
Hansen, P. J. et al. Scanning capacitance microscopy imaging of threading dislocations in GaN films grown on (0001) sapphire by metalorganic chemical vapor deposition. Applied Physics Letters 72, 2247–2249 (1998).
Ng, T. K. et al. Group-III-nitride and halide-perovskite semiconductor gain media for amplified spontaneous emission and lasing applications. Journal of Physics D: Applied Physics 54, 143001 (2021).
Tei‐Chen Chen Yuh‐Ju Lee, H.-C. W. & Ho, C.-H. Influences of thermal annealing and indium content on mechanical stresses and optoelectronic characteristics of light emitter diodes. Journal of the Chinese Institute of Engineers 31, 291–299 (2008).
Gurnett, K. & Adams, T. Native substrates for GaN: the plot thickens. III-Vs Review 19, 39–41 (2006).
Zhao, D. G., Xu, S. J., Xie, M. H., Tong, S. Y. & Yang, H. Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire. Applied Physics Letters 83, 677–679 (2003).
Glassbrenner, C. & Slack, G. A. Thermal conductivity of silicon and germanium from 3°K to the melting point. Physical Review 134, A1058–A1069 (1964).
Burghartz, S. & Schulz, B. Thermophysical properties of sapphire, AlN and MgAl2O4 down to 70 K. Journal of Nuclear Materials 212-215. Fusion Reactor Materials, 1065– 1068 (1994).
Slack, G. A. Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond. Journal of Applied Physics 35, 3460–3466 (1964).
Cheng, Z. et al. Experimental observation of high intrinsic thermal conductivity of AlN. Phys. Rev. Mater. 4, 044602 (4 2020).
Kidalov, S. V. & Shakhov, F. M. Thermal Conductivity of Diamond Composites. Materials 2, 2467–2495 (2009).
Mion, C., Muth, J., Preble, E. A. & Hanser, D. Thermal conductivity, dislocation density and GaN device design. Superlattices and Microstructures 40, 338–342 (2006).
Yamashita, H., Fukui, K., Misawa, S. & Yoshida, S. Optical properties of AlN epitaxial thin films in the vacuum ultraviolet region. Journal of Applied Physics 50, 896–898 (1979).
Chang, S., Zhao, M., Spampinato, V., Franquet, A. & Chang, L. The influence of AlN nucleation layer on RF transmission loss of GaN buffer on high resistivity Si (111) substrate. Semiconductor Science and Technology 35, 035029 (2020).
Manoi, A., Pomeroy, J. W., Killat, N. & Kuball, M. Benchmarking of Thermal Boundary Resistance in AlGaN/GaN HEMTs on SiC Substrates: Implications of the Nucleation Layer Microstructure. IEEE Electron Device Letters 31, 1395–1397 (2010).
Moens, P. et al. On the impact of carbon-doping on the dynamic Ron and off-state leakage current of 650V GaN power devices. 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), 37–40 (2015).
Iwakami, S. et al. AlGaN/GaN Heterostructure Field-Effect Transistors (HFETs) on Si Substrates for Large-Current Operation. Japanese Journal of Applied Physics 43, L831 (2004).
Lawrence Selvaraj, S., Suzue, T. & Egawa, T. Breakdown Enhancement of AlGaN/GaN HEMTs on 4-in Silicon by Improving the GaN Quality on Thick Buffer Layers. IEEE Electron Device Letters 30, 587–589 (2009).
Stoffels, S. et al. The physical mechanism of dispersion caused by AlGaN/GaN buffers on Si and optimization for low dispersion in 2015 IEEE International Electron Devices Meeting (IEDM) (2015), 35.4.1–35.4.4.
Greco, G., Iucolano, F. & Roccaforte, F. Ohmic contacts to Gallium Nitride materials. Applied Surface Science 383, 324–345 (2016).
Luther, B. et al. Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN. Applied physics letters 70, 57–59 (1997).
Yadav, Y. K. et al. Ti/Au/Al/Ni/Au low contact resistance and sharp edge acuity for highly scalable AlGaN/GaN HEMTs. IEEE Electron Device Letters 40, 67–70 (2018).
Li, Y. et al. Investigation of gate leakage current mechanism in AlGaN/GaN high-electronmobility transistors with sputtered TiN. Journal of Applied Physics 121 (2017).
Chandran, N., Kolakieva, L., Kakanakov, R. & Polychroniadis, E. The role of the Ti and Mo barrier layer in Ti/Al metallization to AlGaN/GaN heterostructures at identical process conditions: A structural and chemical characterization. Semiconductor Science and Technology 30, 115011 (2015).
Kolaklieva, L. et al. The role of Ti/A1 ratio in nanolayered ohmic contacts for GaN/ AlGaN HEMTs in 2008 26th International Conference on Microelectronics (2008), 221– 224.
Kim, J. K., Jang, H. W. & Lee, J.-L. Mechanism for Ohmic contact formation of Ti on ntype GaN investigated using synchrotron radiation photoemission spectroscopy. Journal of applied physics 91, 9214–9217 (2002).
Schmitz, A. et al. Metal contacts to n-type GaN. Journal of Electronic Materials 27, 255–260 (1998).
Miura, N. et al. Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal. Solid-State Electronics 48, 689–695 (2004).
Chiu, H.-C., Lin, C.-W., Lin, C.-K., Kao, H.-L. & Fu, J. S. Thermal stability investigations of AlGaN/GaN HEMTs with various high work function gate metal designs. Microelectronics Reliability 51, 2163–2167 (2011).
Wu, P.-Y. et al. Analysis of Abnormal Current Rise Mechanism in GaN-MIS HEMT With Al 2 O 3/Si 3 N 4 Gate Insulator Under Hot Switching. IEEE Transactions on Electron Devices 69, 4218–4223 (2022).
Hsieh, T.-E. et al. Gate recessed quasi-normally OFF Al 2 O 3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer. IEEE Electron Device Letters 35, 732–734 (2014).
Zhao, Y.-P. et al. Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators. Chinese Physics B 29, 087304 (2020).
Schroder, D. Semiconductor Material and Device Characterization isbn: 9780471739067 (Wiley, 2015).
Asubar, J. T., Yatabe, Z., Gregusova, D. & Hashizume, T. Controlling surface/interface states in GaN-based transistors: Surface model, insulated gate, and surface passivation. Journal of Applied Physics 129, 121102 (2021).
Zhu, P., Ni, X., Fan, Q. & Gu, X. Surface Dispersion Suppression in High-Frequency GaN Devices. Crystals 12 (2022).
Kohn, E. et al. Transient characteristics of GaN-based heterostructure field-effect transistors. IEEE Transactions on Microwave Theory and Techniques 51, 634–642 (2003).
Meneghini, M. et al. Trapping and Reliability Assessment in D-Mode GaN-Based MISHEMTs for Power Applications. IEEE Transactions on Power Electronics 29, 2199–2207 (2014).
Huang, H., Liang, Y. C., Samudra, G. S., Chang, T.-F. & Huang, C.-F. Effects of gate field plates on the surface state related current collapse in AlGaN/GaN HEMTs. IEEE Transactions on Power Electronics 29, 2164–2173 (2013).
Green, B. et al. The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs. IEEE Electron Device Letters 21, 268–270 (2000).
Kikkawa, T. et al. Surface-charge controlled AlGaN/GaN-power HFET without current collapse and gm dispersion in International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224) (2001), 25.4.1–25.4.4.
Zhang, N.-Q. et al. High breakdown GaN HEMT with overlapping gate structure. IEEE Electron Device Letters 21, 421–423 (2000).
Chini, A. et al. 12W/mm power density AlGaN/GaN HEMTs on sapphire substrate. Electronics Letters 40, 1 (2004).
Meneghini, M. et al. Buffer traps in Fe-doped AlGaN/GaN HEMTs: Investigation of the physical properties based on pulsed and transient measurements. IEEE Transactions on Electron Devices 61, 4070–4077 (2014).
Ramesh, R., Arivazhagan, P., Prabakaran, K., Sanjay, S. & Baskar, K. Influence of AlN interlayer on AlGaN/GaN heterostructures grown by metal organic chemical vapour deposition. Materials Chemistry and Physics 259, 124003 (2021).
Apsley, N. & Hughes, H. P. Temperature-and field-dependence of hopping conduction in disordered systems. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 30, 963–972 (1974).
Pan, Q. F. & Liu, Q. Poole–Frenkel Emission Saturation and Its Effects on Time-toFailure in Ta-Ta2O5-MnO2 Capacitors. Advances in Materials Science and Engineering 2019, 1–9 (2019).
Houng, M. P., Wang, Y. H. & Chang, W. J. Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model. Journal of Applied Physics 86, 1488– 1491 (1999).
Wang, M. & Chen, K. J. Kink Effect in AlGaN/GaN HEMTs Induced by Drain and Gate Pumping. IEEE Electron Device Letters 32, 482–484 (2011).
Xiao-Hua, M. et al. Kink effect in curren–voltage characteristics of a GaN-based high electron mobility transistor with an AlGaN back barrier. Chinese Physics B 23, 027302 (2014).
Grupen, M. Reproducing GaN HEMT Kink Effect by Simulating Field-Enhanced Barrier Defect Ionization. IEEE Transactions on Electron Devices 66, 3777–3783 (2019).
Bouya, M. et al. Analysis of traps effect on AlGaN/GaN HEMT by luminescence techniques. Microelectronics Reliability 48. 19th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (ESREF 2008), 1366–1369 (2008).
Daumiller, I. et al. Current instabilities in GaN-based devices. IEEE Electron Device Letters 22, 62–64 (2001).
Meneghini, M. et al. GaN-based power devices: Physics, reliability, and perspectives. Journal of Applied Physics 130, 181101 (2021).
Rawal, D. et al. Current collapse scaling in GaN/AlGaN/SiC high electron mobility transistors. Solid State Electronics Letters 1, 30–37 (2019).
Del Alamo, J. A. & Lee, E. S. Stability and Reliability of Lateral GaN Power Field-Effect Transistors. IEEE Transactions on Electron Devices 66, 4578–4590 (2019).
Huang, S., Yang, S., Roberts, J. & Chen, K. J. Threshold voltage instability in Al2O3/ GaN/AlGaN/GaN metal–insulator–semiconductor high-electron mobility transistors. Japanese journal of applied physics 50, 110202 (2011).
Lansbergen, G. et al. Threshold voltage drift (PBTI) in GaN D-MODE MISHEMTs: Characterization of fast trapping components in 2014 IEEE International Reliability Physics Symposium (2014), 6C–4.
Lagger, P., Ostermaier, C., Pobegen, G. & Pogany, D. Towards understanding the origin of threshold voltage instability of AlGaN/GaN MIS-HEMTs in 2012 International Electron Devices Meeting (2012), 13–1.
Johnson, D. W. et al. Threshold voltage shift due to charge trapping in dielectric-gated AlGaN/GaN high electron mobility transistors examined in Au-free technology. IEEE transactions on electron devices 60, 3197–3203 (2013).
Lagger, P., Ostermaier, C., Pobegen, G. & Pogany, D. Towards understanding the origin of threshold voltage instability of AlGaN/GaN MIS-HEMTs in 2012 International Electron Devices Meeting (2012), 13.1.1–13.1.4.
Guo, A. & del Alamo, J. A. Positive-bias temperature instability (PBTI) of GaN MOSFETs in 2015 IEEE International Reliability Physics Symposium (2015), 6C.5.1–6C.5.7.
Wu, T.-L. et al. Toward Understanding Positive Bias Temperature Instability in Fully Recessed-Gate GaN MISFETs. IEEE Transactions on Electron Devices 63, 1853–1860 (2016).
Meneghini, M. et al. Negative Bias-Induced Threshold Voltage Instability in GaN-on-Si Power HEMTs. IEEE Electron Device Letters 37, 474–477 (2016).
Sang, F. et al. Investigation of the threshold voltage drift in enhancement mode GaN MOSFET under negative gate bias stress. Japanese Journal of Applied Physics 54, 044101 (2015).
Guo, A. & del Alamo, J. A. Unified Mechanism for Positive- and Negative-Bias Temperature Instability in GaN MOSFETs. IEEE Transactions on Electron Devices 64, 2142– 2147 (2017).
Viey, A. et al. Investigation of nBTI degradation on GaN-on-Si E-mode MOSc-HEMT in 2019 IEEE International Electron Devices Meeting (IEDM) (2019), 4.3.1–4.3.4.
Zagni, N., Chini, A., Puglisi, F. M., Pavan, P. & Verzellesi, G. The effects of carbon on the bidirectional threshold voltage instabilities induced by negative gate bias stress in GaN MIS-HEMTs. Journal of Computational Electronics 19, 1555–1563 (2020).
He, J., Hua, M., Zhang, Z. & Chen, K. J. Performance and VTH Stability in E-Mode GaN Fully Recessed MIS-FETs and Partially Recessed MIS-HEMTs With LPCVD-SiNx/ PECVD-SiNx Gate Dielectric Stack. IEEE Transactions on Electron Devices 65, 3185– 3191 (2018).
Hua, M. et al. Dependence of VTH Stability on Gate-Bias Under Reverse-Bias Stress in E-mode GaN MIS-FET. IEEE Electron Device Letters 39, 413–416 (2018).
Guo, A. & del Alamo, J. A. Negative-bias temperature instability of GaN MOSFETs in 2016 IEEE International Reliability Physics Symposium (IRPS) (2016), 4A-1-1-4A-1–6.
TeslatronPT System Manual, Oxford Instruments NanoScience (2011).
Unni, V. et al. Analysis of drain current saturation behaviour in GaN polarisation super junction HFETs. IET Power Electronics 11, 2198–2203 (2018).
Radhakrishnan, K., Dharmarasu, N., Sun, Z., Arulkumaran, S. & Ng, G. I. Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasmaassisted molecular beam epitaxy. Applied Physics Letters 97, 232107 (2010).
Cuerdo, R. et al. The Kink Effect at Cryogenic Temperatures in Deep Submicron AlGaN/ GaN HEMTs. IEEE Electron Device Letters 30, 209–212 (2009).
Khade, R. P., Sarkar, S., DasGupta, A. & DasGupta, N. Origin of the Kink Effect in AlInN/GaN High Electron-Mobility Transistor. Journal of Applied Physics 130, 205707 (2021).
Brar, B. et al. Impact ionization in high performance AlGaN/GaN HEMTs in Proceedings. IEEE Lester Eastman Conference on High Performance Devices (2002), 487–491.
Webster, R., Wu, S. & Anwar, A. Impact ionization in InAlAs/InGaAs/InAlAs HEMT’s. IEEE Electron Device Letters 21, 193–195 (2000).
Zanoni, E. et al. Impact ionization and light emission in AlGaAs/GaAs HEMT’s. IEEE Transactions on Electron Devices 39, 1849–1857 (1992).
Rodilla, H., Schleeh, J., Nilsson, P. Å. & Grahn, J. V. Cryogenic Kink Effect in InP pHEMTs: A Pulsed Measurements Study. IEEE Transactions on Electron Devices 62, 532–537 (2015).
Hirst, L. in Comprehensive Renewable Energy (ed Letcher, T. M.) Second Edition, 234– 255 (Elsevier, Oxford, 2022). isbn: 978-0-12-819734-9.
Cao, L. et al. Temperature Dependence of Electron and Hole Impact Ionization Coefficients in GaN. IEEE Transactions on Electron Devices 68, 1228–1234 (2021).
Wienecke, S. et al. N-Polar Deep Recess MISHEMTs With Record 2.9 W/mm at 94 GHz. IEEE Electron Device Letters 37, 713–716 (2016).
Godfrey, D. et al. Current collapse degradation in GaN High Electron Mobility Transistor by virtual gate. Microelectronics Journal 118, 105293 (2021).
Kikkawa, T., Mitani, E., Joshin, K., Yokokawa, S. & Tateno, Y. An over 100 W CW output power amplifier using AlGaN/GaN HEMTs (2004).
Omika, K. et al. Operation Mechanism of GaN-based Transistors Elucidated by ElementSpecific X-ray Nanospectroscopy. Scientific Reports 8 (2018).
Tsuno, M. et al. Physically-based threshold voltage determination for MOSFET’s of all gate lengths. IEEE Transactions on Electron Devices 46, 1429–1434 (1999).
Jiang, H. et al. Investigation of in situ SiN as gate dielectric and surface passivation for GaN MISHEMTs. IEEE Transactions on Electron Devices 64, 832–839 (2017).
Yang, S., Liu, S., Liu, C., Lu, Y. & Chen, K. J. Mechanisms of thermally induced threshold voltage instability in GaN-based heterojunction transistors. Applied Physics Letters 105 (2014).
Huang, H., Li, F., Sun, Z. & Cao, Y. Model Development for Threshold Voltage Stability Dependent on High Temperature Operations in Wide-Bandgap GaN-Based HEMT Power Devices. Micromachines 9 (2018).
Nela, L., Perera, N., Erine, C. & Matioli, E. Performance of GaN Power Devices for Cryogenic Applications Down to 4.2 K. IEEE Transactions on Power Electronics 36, 7412–7416 (2021).
Perrin, R., Bergogne, D., Martin, C. & Allard, B. GaN Power Module with High Temperature Gate Driver and Insulated Power Supply. IMAPSource Proceedings 2014, 198–205 (2014).
Kemerley, R., Wallace, H. & Yoder, M. Impact of wide bandgap microwave devices on DoD systems. Proceedings of the IEEE 90, 1059–1064 (2002).
Yu, A. Electron tunneling and contact resistance of metal-silicon contact barriers. SolidState Electronics 13, 239–247 (1970).
Padovani, F. & Stratton, R. Field and thermionic-field emission in Schottky barriers. Solid-State Electronics 9, 695–707 (1966).
Subramani, N. K. et al. Identification of GaN Buffer Traps in Microwave Power AlGaN/ GaN HEMTs Through Low Frequency S-Parameters Measurements and TCAD-Based Physical Device Simulations. IEEE Journal of the Electron Devices Society 5, 175–181 (2017).
Wu, S., Webster, R. & Anwar, M. Physics-Based Intrinsic Model for AlGaN/GaN HEMTs. MRS Internet Journal of Nitride Semiconductor Research 4, 775–780 (1999).
Sze, S. M., Li, Y. & Ng, K. K. Physics of semiconductor devices (John wiley & sons, 2021).
Dogan, H. & Elagoz, S. Temperature-dependent electrical transport properties of (Au/ Ni)/n-GaN Schottky barrier diodes. Physica E: Low-dimensional Systems and Nanostructures 63, 186–192 (2014).
Schubert, E. F. Light-Emitting Diodes 2nd ed. (Cambridge University Press, 2006).
Yan, D. et al. On the reverse gate leakage current of AlGaN/GaN high electron mobility transistors. Applied Physics Letters 97, 153503 (2010).
Turuvekere, S. et al. Gate Leakage Mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: Comparison and Modeling. IEEE Transactions on Electron Devices 60, 3157–3165 (2013).
Hofmann, T. et al. Temperature dependent effective mass in AlGaN/GaN high electron mobility transistor structures. Applied Physics Letters 101, 192102 (2012).
Korotyeyev, V. V., Kochelap, V. A., Kaliuzhnyi, V. V. & Belyaev, A. E. High-frequency conductivity and temperature dependence of electron effective mass in AlGaN/GaN heterostructures. Applied Physics Letters 120, 252103 (2022).
Armakavicius, N. et al. Electron effective mass in GaN revisited: New insights from terahertz and mid-infrared optical Hall effect. APL Materials 12, 021114 (2024).
Hübner, J., Döhrmann, S., Hägele, D. & Oestreich, M. Temperature-dependent electron Landé g factor and the interband matrix element of GaAs. Phys. Rev. B 79, 193307 (19 2009).
Sarkar, N. & Ghosh, S. Temperature dependent band gap shrinkage in GaN: Role of electron–phonon interaction. Solid State Communications 149, 1288–1291 (2009).
Barber, H. Effective mass and intrinsic concentration in silicon. Solid-State Electronics 10, 1039–1051 (1967).
Wang, X. et al. Threshold Voltage Instability of Schottky-type p-GaN Gate HEMT down to Cryogenic Temperatures in 2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2023), 115–118.
Liu, Y., Yu, Q. & Du, J. Simulation design of a high-breakdown-voltage p-GaN-gate GaN HEMT with a hybrid AlGaN buffer layer for power electronics applications. Journal of Computational Electronics 19 (2020).
Nicholls, J. R., Dimitrijev, S., Tanner, P. & Han, J. The Role of Near-Interface Traps in Modulating the Barrier Height of SiC Schottky Diodes. IEEE Transactions on Electron Devices 66, 1675–1680 (2019).