簡易檢索 / 詳目顯示

研究生: 陳公平
Chen, Gong-Ping
論文名稱: 游泳者下水前沖洗對於游泳池水有機物量影響與消毒副產物致癌風險評估之研究—以北市某國小室內泳池為例
The influence of swimmer body washing before entering the pool on the amount of pool water organics and the chlorinated disinfection by-products’ cancer risk assessment in an elementary school’s indoor swimming pool
指導教授: 曾治乾
Tseng, Chie-Chien
學位類別: 碩士
Master
系所名稱: 健康促進與衛生教育學系
Department of Health Promotion and Health Education
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 123
中文關鍵詞: 游泳池三鹵甲烷有機物總有機碳致癌風險評估
英文關鍵詞: swimming pool, trihalomethanes, organics, total organic carbon, cancer risk assessment
DOI URL: https://doi.org/10.6345/NTNU202204873
論文種類: 學術論文
相關次數: 點閱:215下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究重點在於瞭解北市龍安國小之游泳池三鹵甲烷與有機物(TOC值)的現況背景值(沖洗介入前)、分析其三鹵甲烷生成之相關因素,並藉由小學生下水前的沖洗行為介入,驗證小學生下水前的沖洗行為會對於每位使用龍安國小泳池的上課學生有機物(TOC值)的帶入量產生影響;運用美國環保署開發之游泳者多途徑暴露模式(Swimodel)之計算方法搭配收集到的數據,搭配致癌斜率係數,計算出龍安國小學生的致癌風險評估值。
    泳池環境樣品來源為臺北市立龍安國民小學游泳池,研究者在泳池現場進行連續13週,每週10次,共計129次的池水與空氣樣品採樣。
    結果顯示,龍安國小游泳池水中總三鹵甲烷濃度之背景值(沖洗介入前)為98.61-214.19 µg/L,平均濃度為157.32 µg/L;空氣中濃度為24.61-303.37µg/m3,平均濃度為162.71 µg/m3,相較於其他國內研究結果數值較偏高,其組成以三氯甲烷為主(均在80%以上);TOC方面,濃度背景值介於5-9.9mg/L之間,平均值為6.8mg/L,濃度分布相較於介入前(<5-11mg/L),介入後的TOC濃度集中在6-9 mg/L之間。
    TOC濃度與空氣總三鹵甲烷濃度皆與游泳人數呈現正相關;氣溫與空氣三鹵甲烷呈現正相關;游泳池TOC濃度與池水總三鹵甲烷濃度呈現正相關。
    在龍安國小上游泳課學生每人帶入TOC量的推估中,運用了曲線配適—最小平方法,推得上游泳課學生平均每人帶入TOC的量在沖洗介入前為2.29g,介入後為0.62g,整體下降了約1.67g;校隊學生每人帶入TOC的量為3.96g,為上游泳課學生的1.7-6.3倍。
    終身致癌總風險的部分,沖洗介入前,龍安國小游泳池總三鹵甲烷之終身致癌總風險為2.52 × 10-6-6.58 × 10-5,平均終身致癌總風險值為2.18 × 10-5;介入後為1.11 × 10-5-4.28 × 10-5,平均終身致癌總風險值為降為1.84 × 10-5,推測若能在下水前將身體上的有機物沖洗乾淨,降低帶入池內有機物的量是有助於總三鹵甲烷之終身致癌總風險值的下降。
    無論介入前或介入後,龍安國小泳池之總三鹵甲烷與各物種之終身致癌風險值大小均比文獻建議之小學生可接受的終身致癌風險10-7來的高,建議可加強室內泳池的通風,增設風扇或使門窗經常維持敞開,增進室內空氣對流,提高換氣率,以降低空氣中三鹵甲烷的濃度。

    The study focus to find out the amount of trihalomethanes and total organic carbon(TOC) in Taipei Longan Elementary School indoor swimming pool’s water; to analyze the correlation among the factors of the trihalomethane formation; and to prove the students in the swimming lesson can reduce the amount of the organic on their body by washing before get into the pool; to calculate the trihalomethanes’ cancer risk in Taipei Longan Elementary School indoor swimming pool by using Swimmer Exposure Model developed by United States Environmental Protection Agency with cancer slope factors.
    The sample source is from Taipei Longan Elementary School indoor swimming pool. We conduct continuous sampling for 13 weeks, 10 times per week, total of 129 times water and air samples at the pool.
    The results revealed that the concentrations of total trihalomethanes in pool water(before body washing intervention) ranged from 98.61 to 214.19 μg/L, and the average concentration was 157.32 μg/L; Ambient air total trihalomethanes concentrations ranged from 24.61 to 303.37 μg/m3, and the average concentration was 162.71 µg/m3. The main composition of total trihalomethanes in the water and air samples was chloroform (above 80%). Compared to other domestic research, the results were more high value. The concentrations of total organic carbon in pool water(before washing intervention) ranged from below 5 to 9.9 mg/L, and the average concentrations was 6.8 mg/L. Compared to before intervention (<5-11mg /L), TOC concentration condition focused on 6 to 9 mg/L after intervention.
    The concentrations of total organic carbon, total trihalomethanes in ambient air were positively correlated with the number of swimmers. The ambient temperature was positively correlated with the concentrations of total trihalomethanes in ambient air. The concentration of total organic carbon was also positively correlated with the concentrations of total trihalomethanes in pool water.
    We applied the curve fitting - the least squares method to estimate the amount of TOC taken into the pool per student taking the swimming lesson at Longan elementary school. The estimated results showed that the amount of TOC taken into the pool per student taking the swimming lesson was 2.29g before body washing intervention, 0.62g after body washing intervention, and the amount of TOC taken into the pool per student taking the swimming lesson an overall declined about 1.67g; The amount of TOC taken into the pool per school team Swimmer was 3.96g, of which taking the swimming lesson’s student was about 1.7 to 6.3 times.
    The results of the lifetime cancer risk of total trihalomethanes before body washing intervention ranged from 2.52 × 10-6 to 6.58 × 10-5, and the average lifetime cancer risk of total trihalomethanes was 2.18 × 10-5; the lifetime cancer risk of total trihalomethanes after body washing intervention ranged from 1.11 × 10-5 to 4.28 × 10-5, and the average lifetime cancer risk of total trihalomethanes decreased to 1.84 × 10-5. It speculated that if the organics on the body can be cleaned before get into the water, reducing the amount of organics into the pool is helpful to decrease total trihalomethanes’ lifeltime cancer risk.
    Whether before or after intervention, the results of the lifetime cancer risk of total trihalomethanes and each species of trihalomethanes were all higher than the elementary school students recommendation of acceptable lifetime cancer risk 10-7. We recommended pool managers to strengthen the indoor pool ventilation, additional fans or to open the doors and windows more often, enhance indoor air convection, improve ventilation rate in order to reduce the concentration of trihalomethanes in the ambient air.

    目錄 第一章 緒論………………………………………………………………….1 第一節 研究動機………………………………………………………...1 第二節 研究目的………………………………………………………...3 第二章 文獻探討…………………………………………………………….4 第一節 加氯消毒副產物………………………………………………...4 一、加氯消毒副產物的定義………………………………………….4 二、游泳池加氯消毒副產物的種類………………………………4 三、游泳池加氯消毒副產物的生成影響因素……………….………8 第二節 加氯消毒副產物對人體的危害……………………………….12 一、三鹵甲烷(THMs)的危害…………………….………………….12 二、鹵乙酸(HAAs)的危害………...………………………………...14 第三節 加氯消毒副產物的致癌風險評估…………………………….14 一、三鹵甲烷與五種鹵乙酸(HAA5)的致癌物分類……………….14 二、加氯消毒副產物的暴露評估-Swimmer Exposure Model…...17 三、終身致癌風險評估……………………………………………...28 四、泳池加氯消毒副產物之終身致癌風險值文獻………………...30 第四節 估計有機物帶入量相關文獻………………………………….31 一、曲線配適(Curve Fitting)………………………………………...31 二、TOC降解速率………………………………………………...32 第三章 研究方法…………………………………………………………...34 第一節 研究對象……………………………………………………….34 一、臺北市立龍安國民小學游泳池..…………………..…………...35 二、龍安國小游泳池之游泳者…………………………...................35 第二節 研究設計……………………………………………………….36 第三節 採樣與分析…………………………………………………….39 一、樣品採樣………………………………….……………………..39 二、樣品分析………………………………………………………...41 第四節 研究工具……………………………………………………….46 一、採樣、分析用…………………………………………………...46 二、計算推估用……………………………………………………...49 三、介入時使用—沖洗步驟介入的資料…………………………...63 第四章 結果與討論………………………………………………………...65 第一節 游泳池採樣與分析結果……………………………………….66 一、 游泳池採樣環境紀錄………………………………………...66 二、游泳池三鹵甲烷採樣紀錄……………………………………...73 第二節 TTHMs濃度與生成因素之相關性探討……………...……….80 一、泳池人數與池水總有機碳……………………………………...80 二、泳池人數與池水總三鹵甲烷、空氣三鹵甲烷之相關性……….81 三、池水總有機碳與池水總三鹵甲烷之相關性…………………...83 四、室內氣溫與空氣總三鹵甲烷之相關性…………………...........84 五、加氯消毒副產物生成因子與總三鹵甲烷之相關性整理……85 第三節 游泳池有機物帶入量估計………………………………….…86 一、上游泳課學生平均每人帶入有機物的量…………..………….88 二、校隊學生平均每人帶入有機物的量…………………..……….89 第四節 游泳池三鹵甲烷終身致癌風險評估………………………….90 一、實行沖洗前之三鹵甲烷終身致癌風險評估…………...............91 二、實行沖洗後之三鹵甲烷終身致癌風險評估…………………...92 三、比較沖洗介入前、後之終身致癌風險值……………………….92 第五章 結論與建議………………………………………………………...94 第一節 結論………………………………………………………….....94 第二節 建議………………………………………………………….....96 參考書目……………………………………………………………..……...98 表目錄 表1 美國環保署致癌物質分類…………………...………………………..15 表2 WHO國際癌症研究機構之致癌物質分類…………………………...15 表3各種加氯消毒副產物之致癌分類…...…………….…………………..16 表4 8到12歲游泳者特性一覽表………...………….……………………..19 表5 THMs與HAA5化學特性一覽表…...……………..…………………..20 表6 消毒副產物個暴露途徑之致癌斜率整理……………...……………..29 表7 三鹵甲烷之主要與次要定量離子…...………………….…………….45 表8 水中總三鹵甲烷方法偵測極限濃度………………………………….45 表9 本研究所用之龍安國小2-6年級游泳者特性一覽表...…………...51 表10 THMs化學特性一覽表………..……………………………………...52 表11 在[Br-]=0不同氯濃度及時間點下的TOC濃度…..………………...55 表12 在[Br-]=0不同氯濃度及反應時間下的[TOC]降解速率…………...56 表13 在[Br-]=0不同氯濃度及反應時間下的TOC降解速率…………….56 表14 估計每人TOC帶入量所需參數…………...………………………...58 表15 部分TOC估計相關統計數據整理範例……………...……………...60 表16 龍安國小游泳池池水總三鹵甲烷濃度整體比較……...……………74 表17 龍安國小游泳池池水三鹵甲烷濃度介入前、後比較………..……...75 表18 龍安國小游泳池空氣總三鹵甲烷濃度整體比較...............................77 表19 龍安國小游泳池空氣三鹵甲烷濃度介入前、後比較.........................79 表20 加氯消毒副產物生成因子與總三鹵甲烷濃度之相關性...................86 表21 估計每人TOC帶入量所需參數..........................................................87 表22 TOC的估計值與測量值差的平方和與每人帶入池水中TOC的量的迴歸方程式符號對照表………………………………………….......88 表23 各迴歸方程式所估算出x值為多少時y值會最小值….....................89 表24 本研究所用之龍安國小2-6年級游泳者特性一覽表......................91 表25 游泳學生暴露三鹵甲烷之終身致癌總風險介入前、後比較.............93 附表一 採樣時的環境數據……………………………………………….108 附表二 3到5月龍安泳池總有機碳採樣紀錄…………………………..115   圖目錄 圖1 水中加氯消毒副產物…………...………………..………………….….6 圖2 在[Br-]=0不同氯濃度以及反應時間下的TOC濃度………………….33 圖3 研究流程圖………………………...……………………….………….38 圖4 沖洗介入前與介入後應用最小平方法估計上游泳課平均每人帶入TOC量之示意圖……………………………………………………….61 圖5 應用最小平方法估計校隊平均每人帶入TOC量之示意圖………….62 圖6 3到5月龍安國小泳池室內氣溫變化趨勢圖.………………………….67 圖7 3到5月龍安國小泳池pH值變化趨勢圖……………………………….68 圖8 3到5月龍安國小泳池餘氯濃度值變化趨勢圖…….………………….69 圖9 3/3上午到4/25下午TOC背景值(介入前)濃度變化趨勢…..…….….70 圖10 背景值前半3/3上午到3/24上午之TOC濃度變化趨勢…………...71 圖11 背景值後半4/1下午到4/25下午之TOC濃度變化趨勢……………...71 圖12 介入後4月28日上午到5月30日下午之TOC濃度變化趨勢...………72 圖13 3到5月TOC濃度整體變化趨勢………….…………………...............73 圖14 龍安國小游泳池池水總三鹵甲烷濃度整體比較.…………...……...74 圖15 龍安國小游泳池池水總三鹵甲烷濃度介入前後比較………...........76 圖16 龍安國小泳池與其他文獻之游泳池空氣總三鹵甲烷濃度比較…...78 圖17 龍安國小泳池介入前、後及其他文獻之空氣總三鹵甲烷濃度比較.80 圖18 泳池當日游泳總人數與池水TOC濃度之相關性…………………81 圖19 當日游泳總人數與池水總三鹵甲烷濃度之相關性………………...82 圖20 當日游泳總人數與室內泳池空氣總三鹵甲烷濃度之相關性...……83 圖21 泳池TOC濃度與池水總三鹵甲烷濃度之相關性…………………...84 圖22 泳池室內氣溫與空氣總三鹵甲烷濃度之相關性…………………...85

    一、中文
    中央大學桃竹苗資源中心(2009)。技職管理學院微積分-最小平方誤差迴歸分析。2015年11月25日取自網址:http://dufu.math.ncu.edu.tw/calculus/calculus_bus/node62.html
    內政部統計處(2014)。第十次(民國98~100年)國民生命表兩性、男性及女性。臺北市:內政部統計處。
    王根樹(2003)。飲用水中消毒副產物之生成,健康風險及其前質控制之研究。行政院國家科學委員會委託之專題研究成果報告編號:NSC91-2211-E-002-030。臺北市:行政院國家科學委員會。
    王根樹(2004)。飲用水中三鹵甲烷及含鹵乙酸之生成、散佈及健康風險評估。行政院國家科學委員會委託之專題研究成果報告編號:NSC92-2211-E-002-034。臺北市:行政院國家科學委員會。
    周文萱(2008)。游泳池環境中三鹵甲烷多暴露途徑之健康風險評估(未出版之碩士論文)。中國醫藥大學,臺中市。
    林哲墩(2015)。室內泳池加氯消毒副產物暴露與健康風險評估-以某大學泳池為例(未出版之碩士論文)。國立臺灣師範大學健康促進與衛生教育系,臺北市。
    邱文科、羅友鴻、游志雲、葉文裕、陳旺儀(2003)。應用三度空間人體掃瞄技術於皮表面積模式之探討。勞工安全衛生研究季刊,11(2),152-158。
    金翁正(2010)。飲用水中的奧客-鹵乙酸。民國102年7月11日取自網址:http://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBsQFjAA&url=http%3A%2F%2Fwww.niea.gov.tw%2Fwindows%2Ffile.asp%3FID%3D132&ei=HY7PU6wvhoPyBc3cgsAJ&usg=AFQjCNHqlPnzbWGX0Jf6FEBIY0ZkctiWgw&bvm=bv.71667212,d.dGc
    金翁正、陳麗霞、翁英明(無日期)。國內飲用水中鹵乙酸含量調查(一)。行政院環境保護署。
    洪崇軒(2005)。「以消毒副產物(DBPs)暴露評估為基礎建置安全供水系統之整合管制策略」—子計畫三:「自來水消毒副產物(DBPs)在用水端之暴露評估與管制策略研擬(I)」。行政院國家科學委員會委託之專題研究成果報告(編號:NSC94-2621-Z-327-002)。臺北市:行政院國家科學委員會。
    國立臺北教育大學泳健館(2013)。成人游泳的好處。民國103年1月30日取自網址:http://ntuesportscenter.pixnet.net/blog/post/146947772-%5B%E5%88%86%E4%BA%AB%5D-%E6%88%90%E4%BA%BA%E6%B8%B8%E6%B3%B3%E7%9A%84%E5%A5%BD%E8%99%95
    教育部國民及學前教育署[教育部國教署](2015)。中等學校以下學生平均身高體重(6歲至15歲學生體重平均值6歲至15歲學生身高平均值)。教育部國教署。民國104年10月10日取自網址:http://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBsQFjAAahUKEwi6iLaFiPvIAhUHHqYKHZL1D0E&url=http%3A%2F%2Fwww.mohw.gov.tw%2FCHT%2FDOS%2FDisplayStatisticFile.aspx%3Fd%3D12115%26s%3D1&usg=AFQjCNH18IFhq_PX3993dO-BNWzuf2HwiA&sig2=z3QUc3UEiQmem2pNyFZqAg
    許惠悰(2003)。風險評估與風險管理。新北市:新文京。
    郭崇義、張哲誠、廖勇柏、簡伯珊、施政甫(2006)。居家用水中消毒副產物鹵乙酸之暴露評估。環境保護,29(1),45-56。
    陳明聰、鄭如意、陳政見(2007)。錄音口語提示協助極重度智能障礙成人獨立洗澡成效之研究。特殊教育與復健學報,17,73-87。
    陳緯豪(2006)。游泳池水中含氯乙酸之生成及其液相光催化分解特性研究。未出版之碩士論文。國立高雄第一科技大學,高雄市。
    曾治乾(2012)。游泳池水以臭氧消毒法處理之效能探討。臺北市衛生局委託之專題研究成果報告。臺北市:衛生局。
    飲用水水質標準第三條修正總說明(2014)。飲用水水質標準。中華民國103年1月9日行政院環境保護署環署毒字第1030001229號令修正發布第三條。
    廖寶玫、許偉倩、邱士豪、馮德芳(2008)。公共游泳池水質管理與風險之探討。物業管理學會論文集,4,55-69。
    臺北市營業衛生管理自治條例(民102年7月30日)。
    劉瑞美、蔡宗穆(2013)。教案單元名稱:去洗澡,洗澡趣。民國103年2月14日取自網址:https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiu7L-R5MLKAhUB6aYKHVPkA7IQFggaMAA&url=https%3A%2F%2Fmarket.cloud.edu.tw%2Fapi%2Fdownload%2F141712%2F98824301%2Fdoc&usg=AFQjCNESG4402EPZ3kaG9mAHYy3s1NH5ww
    衛生福利部疾病管制署(2012)。肥皂和清水洗手技術。民國103年2月14日取自網址:http://www.cdc.gov.tw/info.aspx?treeid=7E28957DA254AA0B&nowtreeid=AD5955DBD7520ACB&tid=5A5400CC35F3A135
    鄭智成(2015)。上課講義:Matlab應用_曲線配適。民國104年12月20日取自網址:http://www.cc.ntut.edu.tw/~jcjeng/Computer%20Programs/Matlab_5.pdf
    羅子寧(2011)。游泳池池水中消毒副產物生成特性之探討(未出版之碩士論文)。國立臺灣大學,臺北市。
    盧月詩(2005)。以氯及臭氧氧化模擬游泳池水質有機物之效能及消毒副產物之評估(碩士論文)。取自臺灣博碩士論文系統。(系統編號:70076569446725965653)
    環境保護署(2004)。環境檢驗方法偵測極限測定指引。臺北市:環境保護署。
    環境保護署(2011)。空氣中揮發性含鹵素碳氫化合物檢驗方法-以Tenax-TA吸附劑採樣之氣相層析法。臺北市:環境保護署。
    環境保護署(2012)。水中揮發性有機化合物檢測方法-吹氣捕捉/氣相層析質譜儀法。臺北市:環境保護署。
    二、英文
    Aggazzotti, G., Fantuzzi, G., Predieri, G., & Tartoni, P. L.(1990). Plasma chloroform concentrations in swimmers using indoor swimming pools. Archives of Environmental Health: An International Journal, 45(3), 175-179.
    Aggazzotti, G., Fantuzzi, G., Righi, E., & Predieri, G. (1998). Blood and breath analyses as biological indicators of exposure to trihalomethanes in indoor swimming pools. Science of the Total Environment, 217(1), 155-163.
    Batterman, S., Wang, S., & Zhang, L.(2000). Quenching of Chlorination Disinfection By-Product Formation in Drinking Water by Hydrogen Peroxide. Water Research. 34(5), 1652-1658.
    Bull, R.J.(1982). Health Effect of Drinking Water Disinfectants and Disinfectants By-Products, Environmental Science & Technology, 16(10), pp. 554A-559A.
    Bull, R. J., Lansing, A. J., Larson, J. L., Nelson, M. A., & Sanchez, I. M.(1990). Liver tumor induction in B6C3F1 mice by dichloroacetate and trichloroacetate. Toxicology, 63(3), 341-359.
    Bull, R.J., Birnbaum, L.S., Butterworth, B.E., Cantor, K.P., Pegram, R., Rose, J.B., & Tuomisto J.(1995). Water chlorination: Essential process or cancer hazard. Fundamental and Applied Toxicology, 28, 155-166.
    Carhman, R. A., Borzclleca, J. F., & Shalsky, H.(1981, April). The Effect of Selected Water Disinfectant Products on Testicular DNA Metabolism. Health Effects of Drinking Water Disinfectants and Disinfection By-Products. Symposium conducted at the meeting of Chinati, Ohio.
    Caro, J., & Gallego, M. (2008b). Development of a sensitive thermal desorption method for the determination of trihalomethanes in humid ambient and alveolar air. Talanta, 76(4), 847-853.
    Catto, C., Sabrina, S., Ginette, C. T., Manuel, R., & Robert, T. (2012). Occurrence and spatial and temporal variations of disinfection by-products in the water and air of two indoor swimming pools. International Journal of Environmental Research and Public Health, 9(8), 2562-2586.
    Chen, M. J., Lin, C. H., Duh, J. M., Chou, W. S., & Hsu, H. T.(2011). Development of multi-pathway probabilistic health risk assessment model for swimmers exposed to chloroform in indoor swimming pools. Journal of Hazardous Materials, 185(2), 1037-1044.
    Daniel, F.B., Meier, J.R., & Deangelo A.B.(1993). Advances in research on carcinogenic and genotoxic by-products of chlorine disinfection: chlorinated hydroxyfuranones and chlorinated acetic acids. Ann Ist Super Sanita, 29(2), 279-291.
    Dojlido, J., Zbiec, E., & Swietlik, R.(1999). Formation of the Haloacetic Acids During Ozonation and Chlorination of Water in Warsaw Waterworks (Poland), Water Research, 33(14), 3111-3118.
    Erdinger, L., Kühn, K. P., Kirsch, F., Feldhues, R., Fröbel, T., Nohynek, B., & Gabrio, T. (2004). Pathways of trihalomethane uptake in swimming pools. International Journal of Hygiene and Environmental Health, 207(6), 571-575.
    Fantuzzi, G., Righi, E., Predieri, G., Ceppelli, G., Gobba, F., & Aggazzotti, G. (2001). Occupational exposure to trihalomethanes in indoor swimming pools. The Science of the Total Environment, 264(3), 257-265.
    Fuscoe, J. C., Afshari, A. J., George, M. H., Deangelo, A. B., Tice, R. R., Salman, T., & Allen, J. W.(1996). In vivo genotoxicity of dichloroacetic acid: evaluation with the mouse peripheral blood micronucleus assay and the single cell gel assay. Environmental and Molecular Mutagenesis, 27(1), 1-9.
    Hsu, C. H., Jeng, W. L., Chang, R. M., Chien, L. C., & Han, B. C.(2001). Estimation of potential lifetime cancer risk for trihalomethanes from consuming chlorinated drink water in Taiwan. Environment Research, 85(2), 77-82.
    Hsu, H. T., Chen, M. J., Lin, C. H., Chou, W. S., & Chen, J. H.(2009). Chloroform in indoor swimming-pool air: monitoring and modeling coupled with the effects of environmental conditions and occupant activities. Water Research, 43(15), 3693-3704.
    Ichihashi, K., Teranishi, K., & Ichimura, A.(1999). Brominated trihalomethane formation in halogenation of humic acid in the coexistence of hypochlorite and hypobromite ions. Water Research, 33, 477-483.
    Integrated Risk Information System. (2013). Recent Final Assessment. Retrieved from http://www.epa.gov/iris/
    Jolley, R. L., & Suffet, I. H.(1987). Concentration techniques for isolating organic-constituents in environmental water samples. Advances in Chemistry Series, 214, 3-14
    Judd, S. J., & Black, S. H.(2000). Disinfection by-product formation in swimming pool waters: A simple mass balance. Water Research, 34(5), 1611-1619.
    Kim, H., Shim, J., & Lee, S.(2002). Formation of disinfection by-products in chlorinated swimming pool water. Chemosphere, 46(2002), 123-130.
    Knocke, W. R., West, S., Hoehn, R.C.(1986). Effects of Low Temperature on the Removal of Trihalomethane Precursors by Coagulation. Journal of American Water Works Association, 78, 189-196.
    Kogevinas, M., Villanueva, C. M., Ribera, L. F., Liviac, D., Bustamante, M., Espinoza, F., Nieuwenhuijsen, M. J., Espinosa, A., Fernandez, P., DeMarini, D. M., Grimalt, J. O., Grummt, T., & Marcos, R.(2010). Genotoxic Effects in Swimmers Exposed to Disinfection By-products in Indoor Swimming Pools. Environ Health Perspect, 118(11), 1531–1537. doi:10.1289/ehp.1001959
    Krasner, S.W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, M. J., Onstad, G., & Thruston, A. D. Jr.(2006). The occurrence of a new generation of disinfection by-products. Environ Sci Technol, 40, 7175–7185
    Lee, S. C., Guo, H., Lam S. M. J., & Lau, S. L. A. (2004). Multipathway risk assessment on disinfection by-products of drinking water in Hong Kong. Environmental Research, 94(2004), 47-56.
    Liang, L. & Singer, P. C.(2003). Factors influencing the formation and relativedistribution of haloacetic acids and trihalomethanes in drinking water. Environmental Science & Technology, 37(13), 2920-2928.
    Merck KGaA.(2011). TOC cell test. Darmstadt. Germany: Author.
    Office of Environmental Health Hazard Assessment[OEHHA].(2009). OEHHA Cancer Potency Values. Retrieved from http://www.oehha.org/risk/pdf/TCDBcas061809.pdf
    Paull, B. & Barron, L.(2004). Using Ion Chromatography to MonitorHaloacetic Acids in Drinking Water: A Review of Current Technologies. Journal of Chromatography A, 1046, 1-9.
    Plummer, J. D. & Edzwald, J. K.(1998). Effect of Ozone on Disinfection By-Production Formation of Algae. Water Science and Technology, 37(2), 49-55.
    Pourmoghaddas, H. & Stevens, A. A.(1995). Relationship between trihalomethanes and haloacetic acids with total organic halogen during chlorination. Water Research, 29, 2059-2062.
    Rodricks, J. V., Brett, S. M., & Wrenn, G. C.(1987). Significant risk decisions in federal regulatory agencies. Regulatory Toxicology and Pharmacology, 7(3), 307-320.
    Rook, J. J.(1974). Formation of haloforms during chlorination of natural waters. Water Treatment and Examination, 23, 234-243.
    Singer, P. C.(1999). Humic Substances as Precursors for Potentially Harmful Disinfection By-products. Water Science and Technology, 40, 25-30.
    Smith, M. K., Randall, J. L., Read, E. J., & Stober, J. A.(1992). Developmental toxicity of dichloroacetate in the rat. Teratology, 46(3), 217-223.
    The Risk Assessment Information System.(2013). Parameters of Chemicals. Retrieved from http://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chem_spef
    United State Environmental Protection Agency[USEPA].(2003). Swimmer Exposure Assessment Model (SWIMODEL) Version 3.0. Retrieved from http://www.epa.gov/sites/production/files/2015-09/documents/swimodel-users-guide.pdf
    Uyak, V.(2006). Multi-pathway risk assessment of trihalomethanes exposure in Istanbul drinking water supplies. Environment International, 32, 12-21.
    Villanueva, C. M., Cantor, .K. P., Grimalt, J. O., Malats, N., Silverman, D., Tardon, A., Closas, R. C., Serra, C., Carrato, A., Vinyals, G. C., Marcos, R., Rothman, N., Real, F. X., Dosemeci, M., & Kogevinas, M.(2006). Bladder Cancer and Exposure to Water Disinfection By-Products through Ingestion, Bathing, howering, and Swimming in Pools. American Journal of Epidemiology, 165(2). doi: 10.1093/aje/kwj364
    Villanueva, C. M., Cantor, K. P., Sylvaine Cordier, S., Jaakkola, Jouni J. K., King, W. D., Lynch, C. F., Porru, S., & Kogevinas, M.(2004). Disinfection Byproducts and Bladder Cancer - A Pooled Analysis. Epidemiology, 15(3). 357-367.
    Weinberg, H.S., Krasner, S.W., Richardson, S.D., & Thruston, A.D. Jr. (2002). The occurrence of disinfection by-products (DBPs) of health concern in drinking water: results of a nationwide DBP occurrence study (USEPA Report EPA/600/R-02/068). Retrieved from http://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwi36768gMPKAhVJFpQKHeOGDSoQFgg0MAQ&url=http%3A%2F%2Fwww.pha.poli.usp.br%2FLeArq.aspx%3Fid_arq%3D1049&usg=AFQjCNFEdLrquuFGAHK5M5d7DSkkaz2mpQ
    World Health Organization[WHO].(2006). Guidelines for Safe Recreational Water Environments. World Health Organization.

    下載圖示
    QR CODE