研究生: |
蔡元傑 Yuan-Chieh Tsai |
---|---|
論文名稱: |
脈衝式電鍍CuInSe2在抗反射結構基板之薄膜型太陽能電池研製 Development of absorbed layer on anti-reflection substrate by pulse voltage electrodeposition for CuInSe2 thin film solar cell |
指導教授: |
楊啟榮
Yang, Chii-Rong 楊希文 Yang, His-Wen |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | 銅銦化二硒 、脈衝式電鍍 、非硒化 、薄膜型太陽能電池 |
英文關鍵詞: | CuInSe2, CIS, pulse voltage electrodeposition, non-selenization, thin film solar cell |
論文種類: | 學術論文 |
相關次數: | 點閱:627 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用脈衝式電壓電化學沉積法,結合非硒化熱處理製程,製造二硒化銅銦(CuInSe2,簡稱CIS)薄膜,並製造上蓋板結構(Superstrate),與下基板結構(Substrate)之CIS薄膜型太陽能電池,其結構分別為Glass/ITO/ZnO/CIS/Mo與Glass/Mo/CIS/ZnO/ITO。除CIS吸收層薄膜為脈衝式電壓電化學沉積法外,其餘透明導電層700 nm之ITO薄膜、50 nm之緩衝層ZnO與厚度為1 m背電極Mo,皆是利用射頻磁控濺鍍機台沉積。
本研究利用KOH濕式蝕刻技術,蝕刻<100>方向之單晶矽,形成倒金字塔陣列的抗反射結構,再使用SIGA製程(Silizium-Mikrostruktur, Galvanoformun, Abformung, SIGA),電鑄鎳鈷合金膜仁,成功製作出底部大小為45×45 m2,深度約30m之倒金字塔結構陣列,可用來熱壓低轉化溫度(glass transition temperature, Tg)玻璃基板,形成抗反射結構。
本研究成功由脈衝式電壓電鍍參數、鹽酸濃度與三乙醇胺(Triethanolamine, TEA)螯合劑濃度中,找出適合本研究非硒化熱處理製程之CIS薄膜,在ITO接觸電極基板上,其最佳化參數:三乙醇胺濃度1.0 M,鹽酸濃度0.845 M,Voff與Von分別為-0.4 V與-0.8 V,工作週期(duty cycle)選用50 %,電鍍時間320秒;在鉬背電極基板上之最佳參數:三乙醇胺濃度0.7 M,鹽酸濃度0.56 M,Voff與Von分別為0 V與-0.8 V,工作週期同樣選用50 %,電鍍時間600秒。
本研究為了使用非硒化爐熱處理製程,故將熱處理前之CIS吸收層成分比例,Cu:In:Se調整為1:1:5,並利用鹽酸濃度的調配與熱處理氣體選擇,將鍍層含氧量降至5 %以下,成功克服了一般電鍍製程中,鍍層含氧量偏高之現象。其最佳熱處理參數為使用7 %氫與93 %氬混和氣體,在200 °C
溫度下進行1.5小時之再結晶製程。最後得到薄膜成分Cu:In:Se比例約為1:1:2,此時CIS薄膜呈現類花椰菜之黃銅礦(Chalcopyrite)結構,其結晶顆粒大小約為1.5 m至2 m。
This study fabricated CuInSe2 layer by electrodeposition and non-selenization for CuInSe2, also called CIS, thin film solar cells, and compared the substrate and superstrate whose structure are Glass/Mo/CIS/ZnO/ITO and Glass/ITO/ZnO/CIS/Mo. Exception for CIS layers were produced by pulse voltage electrodeposition, other layers of solar cells, such as 700 nm ITO for contact electrodes, 50 nm ZnO for buffer layers, and 1 m Mo for back electrodes, were fabricated by RF sputtering.
We used KOH to etch <100> silicon wafers for arrayed inversed pyramids structure which can be an anti-reflection structure for monocrystalline silicon solar cells. We used this etched wafer whose bottom area of pyramids are 45×45 m2,30m in depth, to fabricate a Ni-Co mold by SIGA process( Silizium-Mikrostruktur, Galvanoformun, Abformung, also called SIGA) for hot embossing the low transition temperature, Tg, glasses of CIS solar cells as anti-reflection substrates.
For CIS layer, we successfully tuned the parameters of TEA, HCl, and other settings in pulse voltage electrodeposition. For ITO contact electrodes, the best parameters are 1.0 M TEA, 0.845 M HCl, -0.4 V for Voff, -0.8 V for Voff, 50% for duty cycle, and electrodeposited for 320 seconds. For Mo back electrodes, 0.7 M TEA, 0.56 M HCl, 0 V for Voff, -0.8 V for Voff, 50% for duty cycle, electrodeposited for 600 seconds.
To avoid selenization process, we adjusted the composition ratios of Cu:In:Se in CIS layer as 1:1:5, and used concentration of HCl and ambient gas of heat treatment to reduce the oxygen content of CIS layers to 5 %. The best heat treatment was 200 °C for 1.5 hours in 7% H2 and 93% Ar mixed gas. As the result, we could get the composition ratio of Cu:In:Se are 1:1:2, the crystalline are about 1 to 1.5 m.
1. 古鎮南, 微/奈米抗反射結構應用於矽晶太陽能電池之研製, 國立臺灣師範大學, 碩士論文, 2010
2. R. Bhattacharya, Electrodeposition of CuIn1-xGaxSe2 materials for solar cells, NREL, 2011
3. 詹逸民, 葉昱均, 矽薄膜太陽能電池製程技術, 工業材料雜誌,258 (2008)
4. T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori, and T. Mise, Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts, Solar Energy, 77 (2004) 739–747
5. S. Lin, X. Shi, X. Zhang, H. Kou, and C. Wang, Ternary semiconductor compounds CuInS2 (CIS) thin films synthesized by electrochemical atomic layer deposition (EC-ALD), Applied Surface Science, 256 (2010) 4365–4369
6. C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, D. Lincot, and A. N. Tiwari, Non-vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers, Progress in Photovoltaics: Research and Application, 18 (2010) 434–452
7. A. Ihlal, K. Bouabid, D. Soubane, M. Nya, O. Aittalebali, Y. Amira,A. Outzourhit, and G. Nouet, Comparative study of sputtered and electrodeposited CI(S,Se) and CIGSe thin films, Thin Solid Films, 515 (2007) 5852–5856
8. B.M. Basol, M. Pinarbasl, S. Aksu, J. Freitag, P. Gonzalez, T. Johnson, Y.
Matus, B. Metin, M. Narasimhan, D. Nayak, G. Norsworthy, D. Soltz, J. Wang, T. Wang, and H. Zolla, Status of electroplating based CIGS technology development, Photovoltaic Specialists Conference, (2009) 2310–2315
9. N.G. Renganathan, M.V. Subramanian, and S. Mohan, Electrodeposition route to synthesize CIGS films – an economical way to harness solar energy, International Journal of Engineering, Science and Technology, 3(1) (2011) 206–212
10. J. Nelson, The physics of solar cells, Imperial College Press, 2002
11. B. Basol, Commercialization of high efficiency low cost CIGS technology based on electroplating, NREL, 2009
12. 張智閔, 利用電沉積方法製備CIS太陽能電池結構, 國立成功大學, 碩士論文, 2007
13. M. Harati, J. Jia, K. Giffard, K. Pellarin, C. Hewson, DA. Love, WM Lau, and Z. Ding, One-pot electrodeposition, characterization and photoactivity of stoichiometric copper indium gallium diselenide (CIGS) thin films for solar cells, Physical Chemistry Chemical Physics, 12 (2010) 15282–15290
14. F. Chraibi, M. Fahoume, A. Ennaoui, and J.L. Delplancke, Influence of citrate ions as complexing agent for electrodeposition of CuInSe2 thin films, Physica Status Solidi (a), 186(3) (2001) 373–381
15. J. Waldau, Progress in chalcopyrite compound semiconductor research for photovoltaic applications and transfer of results into actual solar cell production, Solar Energy Materials and Solar Cells, 95 (2011) 1509–1517
16. 楊啟榮,微機電系統原理與應用上課講義
17. Y.S. Jung, H.W. Choi, K.H. Kim, S. J. Park and H. H. Yoon, Properties of AZO thin films for solar cells deposited on polycarbonate substrates, Journal of the Korean Physical Society, 55(5) (2009) 1945–1949
18. W. J. Jeong, S.K. Kim, and G.C. Park, Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell, Thin Solid Films, 506–507 (2006) 180–183
19. U.P. Singh and S.P. Patra, Progress in polycrystalline thin-film Cu(In,Ga)Se2 solar cells, International Journal of Photoenergy, 2010 (2010)
20. S.H. Kang, Y.K. Kim, D.S. Choi, and Y.E. Sung, Characterization of electrodeposited CuInSe2 (CIS) film, Electrochimica Acta, 51 (2006) 4433–4438
21. F. Kessler and D. Rudmann, Technological aspects of flexible CIGS solar cells and modules, Solar Energy, 77(6) (2004) 685–695
22. F. Kang, J.P. Ao, G.Z. Sun, Q. HE, and Y. Sun, Growth and characterization of CuInSe2 thin films via one-step electrodeposition from a lactic acid/sodium lactate buffer system, Materials Chemistry and Physics, 115 (2009) 516–520
23. H.H. Chen, P.N. Kalu, and E. E. Kalu, CuInSe2 thin-film deposition on flexible plastic substrate: electrolyte recirculation rate and deposition potential effects, Journal of Solid State Electrochemistry, 14 (2010) 1013–1020
24. Q. Huang and K. Reuter, Electrodeposition of indium on copper for CIS and CIGS solar cell applications, Journal of The Electrochemical Society, 158(2) (2011) D57–D61
25. S. Nomura, K. Nishiyama, and E. Tanaka, Preparation of CuInSe2 thin films on Mo-coated glass substrates by pulse-plated electrodeposition, Japanese Journal of Applied Physics, 37 (1998) 3233–3237
26. A. Bouraiou, M.S. Aida, A. Mosbah, and N. Attaf, Annealing time effect on the properties of CuInSe2 grown by electrodeposition using two electrodes system, Brazilian Journal of Physics, 39(3) (2009)
27. S.Y. Hu, W.H. Lee, S.C. Chang, Y.L. Cheng, and Y.L. Wang, Pulsed electrodeposition of CuInSe2 thin films onto Mo-glass substrates, Journal of the Electrochemical Society, 158(5) (2011) B557–B561
28. T. Ren, R. Yu, M. Zhong, J. Shi, and C. Li, Microstructure evolution of CuInSe2 thin films prepared by single-bath electrodeposition, Solar Energy Materials & Solar Cells, 95 (2011) 510–520
29. J. Schrier, Joshua, Demchenko, and L.W. Wang, Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications, Nano Letters, 7(8) (2007) 2377–2382
30. X. Sun, Y. He, and J.Y. Feng, Growth and characterization of ZnIn2Se4 buffer layer on CuInSe2 thin films, Journal of Crystal Growth, 312 (2009) 48–51
31. Y. Oda, M. Matsubayashi, T. Minemoto, and H. Takakura, Fabrication of Cu(In, Ga)Se2 thin film solar cell absorbers from electrodeposited bilayers, Current Applied Physics, 10 (2010) S146–S149
32. 邱立仁, 電沉積二硒化銅銦太陽能電池之研究, 國立成功大學, 碩士論文, 2007
33. 以電化學沉積法製備銅銦硒薄膜太陽電池之吸收層抗反射層透明導電
層與背部電極, 國立清華大學, 碩士論文, 2008
34. G. Gordillo and C. Carderon, CIS thin film solar cells with evaporated InSe buffer layers, Solar Energy Materials & Solar cells, 77 (2003) 163–173
35. 楊宏仁, 詹逸民, 透明導電層在矽薄膜太陽能電池上之應用, 機械工業雜誌, 太陽光電製程設備技術專輯, 302 (2008)
36. A. Bouraiou, M. S. Aida, E. Tomasella and N. Attaf, ITO substrate resistivity effect on the properties of CuInSe2 deposited using two-electrode system, Journal of Materials Science, 44 (2009) 1241–1244
37. J. Rousset and D. Lincot, Low temperature electrodeposition of zinc oxide layers as transparent conducting oxide window layers for CIGS solar cells, Photovoltaic Specialists Conference, (2009) 1246–1251
38. 王湘儀, 高穿透氯及滴接觸阻抗的氧化銦鉬在P型氮化鎵之歐姆接觸研究, 國立台灣大學, 碩士論文, 2006
39. 赖宇坤, 王 炜, 循环伏安法测定铁胺络合物还原强度, 电化学, 17(1) 2011
40. M.G. Kang, M.S. Kim, J. Kim, and L.J. Guo, Organic solar cells using nanoimprinted transparent metal electrodes, Advanced Materials, 20 (2008) 4408–4413
41. M.G. Kang, T. Xu, H.J. Park, X. Luo, and L.J. Guo, Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes, Advanced Materials, 22 (2010) 4378–4383
42. 陳柏穎, 矽晶圓非等相性濕式蝕刻特性研究, 國立中山大學, 碩士論文, 2003
43. M. Jubault, L. Ribeaucourt, E. Chassaing, G. Renou, D. Lincot, And F.
Donsanti, Optimization of molybdenum thin films for electrodeposited CIGS solar cells, Solar Energy Materials and Solar Cells, 95 (2010) S26–S31
44. 廖成, 韩俊峰, 硒蒸气浓度对制备CIGS薄膜的影响, 物理化学学报, 27(2) (2011) 432–436
45. 方玲, Cu—In膜成分偏析对CIS膜结构的影响, 清华大学学报 44(5) 2004
46. 許能傑, 黃泰錦, 濺鍍Mo薄膜在不同基板上之表面特性分析, Journal of China Institute of Technology, 40 (2009)
47. 李浴春, 王喜莲, InGaAs 薄膜电共沉积研究, 电化学, 6(4) (2000)
48. K. Jayadevan, Fabrication and characterization of novel 2SSS CIGS thin film solar cells for large-scale manufacturing, University of South Florida, Graduate school thesis, 2011
49. 高雅君, 錯合劑對電沉積二硒化銅銦薄膜的影響研究, 國立成功大學, 碩士論文, 2008
50. M.E. Calixto, P.J. Sebastian, R.N. Bhattacharya, and R. Noufi, Compositional and optoelectronic properties of CIS and CIGS thin films formed by electrodeposition, Solar Energy Materials & Solar Cells, 59(1–2) (1999) 75–84
51. H. Matsushita and T. Takizawa, Phase diagram of the CuIn-2Se system for CuInSe2 crystal growth by controlling Se contents, Journal of Crystal Growth, 179(3–4) (1997) 503–509
52. S.Z. El Abedin , A.Y. Saad, H.K. Farag, N. Borisenko, Q.X. Liu, and F. Endres, Electrodeposition of selenium, indium and copper in an air and water-stable ionic liquid at variable temperatures, Electrochimica Acta , 52
(2007) 2746–2754
53. A. Kampmann, V. Sittinger, J. Rechid, and R. Reineke-Koch, Large area electrodeposition of Cu(In,Ga)Se2, Thin Solid Films, (2000) 361–362, 309–313
54. L. Zhang, F.D. Jiang, and J.Y. Feng, Formation of CuInSe2 and Cu(In,Ga)Se2 films by electrodeposition and vacuum annealing treatment, Solar Energy Materials & Solar Cells, 80 (2003) 483–490
55. F.Y. Liu, Lv Ying, Z. Zhang, Y. Lai, J. Li, and Y. Liu, Preparation of chalcopyrite CuInSe2 thin films by pulse-plating electrodeposition and annealing treatment, Proceedings of ISES Solar World Congress , Solar Energy and Human Settlement, 4 (2007) 1316–1320
56. M. Izaki, T. Shinagawa, K. Mizuno, Y. Ida, M. Inaba, and A. Tasaka, Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device, Journal of Physics D: Applied Physics, 40(11) (2007)