研究生: |
B. Vinoth BALASUBRAMANI VINOTH |
---|---|
論文名稱: |
A Study on Integrated Dual-Mode Holographic Tomography and Adaptive Wavefront Correction Technique for Free- Floating Single Live Cell Label-Free Imaging A Study on Integrated Dual-Mode Holographic Tomography and Adaptive Wavefront Correction Technique for Free- Floating Single Live Cell Label-Free Imaging |
指導教授: |
鄭超仁
Cheng, Chau-Jern |
學位類別: |
博士 Doctor |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 96 |
中文關鍵詞: | digital holography 、microscopy 、three-dimensional imaging 、beam rotation tomography 、sample rotation tomography 、single cell analysis 、label-free imaging 、aberration correction 、adaptive optics 、structured illumination |
英文關鍵詞: | digital holography, microscopy, three-dimensional imaging, beam rotation tomography, sample rotation tomography, single cell analysis, label-free imaging, aberration correction, adaptive optics, structured illumination |
DOI URL: | http://doi.org/10.6345/NTNU201900651 |
論文種類: | 學術論文 |
相關次數: | 點閱:179 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Three-dimensional (3D) label-free refractive index (RI) imaging and analysis of a free-floating single live cell is a puzzling keyword for the biological research communities. Digital holographic tomography (DHT) is a potential technique to generate 3D RI profile of the biological specimens without labelling. The DHT uses interferometer configuration followed by either by sample rotation method or by beam rotation method. However, there is no such experimental system is developed to perform both full-angle sample rotation method and beam rotation method; this study developed such an integrated dual-mode tomography (IDT) system for the first time.
The IDT system is developed by combining holographic optical tweezers (HOT) with digital holographic microscopy (DHM). The HOT system is used to control the free-floating live sample and the DHM records the transmitted wavefronts of the sample simultaneously. In this manner, the developed IDT system is capable of collecting and combing the spatial frequencies of full angle sample rotation with beam rotation method to extend the spatial frequency coverages along lateral and axial directions. Consequently, a novel unidentified flying object (UFO) like shaped experimental transfer function is obtained. To demonstrate the potential capability of the developed IDT method, a free-floating live Candida rugosa were used as a sample and its label-free 3D RI profile is generated at its sub-cellular level. The experimental results revealed that the IDT method can quantitatively enhance the lateral and axial resolutions without using any complicated image processing algorithm
One of the major issues in an imaging system is the aberrations induced by the optical components and its alignments, which severely degrades the resolution and the imaging performance of the experimental system. This research study also focused on the development of a novel computer-generated hologram (CGH) based adaptive wavefront compensation technique demonstrated on a compactly developed structured illumination holographic tomography (SI-HT) system. A series of CGHs comprises of phase Fresnel lens and binary blazed grating are designed and displayed on a phase-only spatial light modulator to generate structured light pattern on the sample. The method is validated using Siemens star target and the potential application is verified using live sample candiada rugosa and its sub-cellular level 3D label-free RI profile is generated. The experimental results demonstrated the capability of the method to enhance the resolution in lateral and axial directions.
References
1.P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina and Y. Leprince-Wang, Lab Chip, Cell refractive index for cell biology and disease diagnosis: past, present and future, Lab Chip 16, 634-644 (2016).
2.J. Yoon, K. Kim, H. Park, C. Choi, S. Jang and Y. Park, Biomed, Label-free characterization of white blood cells by measuring 3D refractive index maps, Opt. Express 6, 3865–3875 (2015).
3.K. Haldar, S. Kamoun, N. L. Hiller, S. Bhattacharje and C. van Ooij, Common infection strategies of pathogenic eukaryotes, Nature. Rev. Microbiol., 4, 922–931 (2006).
4.Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld and S. Suresh, Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum, Proc. Natl. Acad. Sci. U. S. A., 105, 13730–13735 (2008).
5.F. D. Bryant, B. A. Seiber and P. Latimer, Absolute optical cross sections of cells and chloroplasts, Arch. Biochem. Biophys., 135, 79–108 (1969).
6.A. H. Hielscher, J. R. Mourant and I. J. Bigio, Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions, Appl. Opt., 36, 125–135 (1997).
7.P. Y. Liu, L. K. Chin, W. Ser, T. C. Ayi, P. H. Yap, T. Bourouina and Y. L. Wang, An optofluidic imaging system to measure the biophysical signature of single waterborne bacteria, Lab Chip 14, 4237–4243 (2014).
8.D. Gabor, Holographic Model of Temporal Recall, Nature London 217, 584 (1968).
9.J. W. Goodman, Introduction to Fourier Optics, Robert & company publishers (2005)
10.T. C. Poon, and J. P. Liu, Introduction to Modern Digital Holography with MATLAB; Cambridge University Press (2014).
11.M. K. Kim, Digital Holographic Microscopy: Principles, Techniques and Applications, springer-Verlag Berlin Heidelberg (2011).
12.U. Schnars, C. Falldorf, J. Watson, and W. Juptner, Digital Holography and wavefront sensing: principles, Techniques and Applications, Springer-Verlag Berlin Heidelberg (2015).
13.I. Yamaguchi and T. Zhang, phase-shifting digital holography, opt. Lett. 22, 1268-1270 (1997).
14.I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, Image reconstruction only by phase data in phase-shifting digital holography, Appl. Opt. 45, 975-983 (2006).
15.U. Schnars and W. P. O. Juptner, Digital recording and numerical reconstruction of holograms, Meas. Sci. Technol. 13, R85-R101 (2002).
16.U. Schnars and W. Juptner, Digital Holography, Springer (2005).
17.T. C. Poon, Optical Scanning Holography – A review of recent progress. J. Opt. Soc. Korea 13, 406-415 (2009).
18.T. Zhang and I. Yamaguchi, Three-dimensional microscopy with phase-shifting digital holography, Opt. Lett. 23, 1221-1223 (1988).
19.E. Cuche, Y. Emery and F. Montfort, One-shot analysis, Nature Photonics 3, 633-635 (2009).
20.X. J Lai, H. Y. Tu, C. H. Wu, Y. C. Lin, and C. J. Cheng, Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy. Appl. Opt. 54, A51–A58 (2015).
21.N. Lue, et al. Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion. Opt. Exp. 16, 16240–16246 (2008).
22.Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet and C. Depeursinge, Marker-free phase nanoscopy, Nature Photonics 7, 113–117 (2013).
23.A. C. Kak, and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).
24.S. S. Kou, and C. J. R. Sheppard, Image formation in holographic tomography. Opt. Lett. 33, 2362–2364 (2008).
25.C. Park, S. Shin, and Y. Park, Generalized quantification of three-dimensional resolution in optical diffraction tomography using the projection of maximal spatial bandwidths, JOSA 35, 1891-1898 (2018).
26.X. J. Lai , H. Y. Tu, Y. C. Lin, and C. J. Cheng, Coded aperture structure illumination digital holographic microscopy for superresolution imaging. Opt. Lett. 43, 1143–1146 (2018).
27.V. Lauer, New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope. J. Microsc. 205, 165 (2002).
28.W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, Tomographic phase microscopy, Nature Methods 4, 717 (2007).
29.M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberle, High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples. Opt. Lett. 34, 79 (2009).
30.J. W. Gorski and W. Osten, Tomographic imaging of photonic crystal fibers. Opt. Lett. 32, 1977 (2007).
31.F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. Opt. Express 14, 7005 (2006).
32.A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, Tomographic phase microscopy of living three-dimensional cell cultures. J. Biomed. Opt. 19, 046009 (2014).
33.Y.-C. Lin and C.-J. Cheng, Sectional imaging of spatially refractive index distribution using coaxial rotation digital holographic microtomography. J. Opt. 16, 065401 (2014).
34.J. Kostencka, T. Kozacki, A. Kuś, and M. Kujawińska, Accurate approach to capillary-supported optical diffraction tomography. Opt. Exp. 23, 7908–7923 (2015).
35.A. Ashkin, and J. M. Dziedzic,. Optical trapping and manipulation of viruses and bacteria. Science. 235, 1517–1520 (1987).
36.V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, Optically controlled three-dimensional rotation of microscopic objects. Appl. Phys. Lett. 82, 829–831 (2003).
37.A. Ahmadi, and S. N. S. Reihani, Axial potential mapping of optical tweezers for biopolymer stretching: the bead size matters. Opt. Lett. 38, 685–687 (2013).
38.M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, Tomographic phase microscopy with 180o rotation of live cells in suspension by holographic optical tweezers. Opt. Lett. 40, 1881-1884 (2015).
39.Nanolive Cell Explorer hardware description, http://nanolive.ch/hardware, (Accessed: 2019).
40.Tomocube hardware description http://www.tomocube.com/product/technology/ (Accessed: 2019).
41.M. J. Booth, Adaptive optical microscopy: the ongoing quest for a perfect image. Light: Science and Applications 3, e165 (2014).
42.I. Izeddin, M. E. Beheiry, J. Andilla, D. Ciepielewski, X. Darzacq, and M. Dahan, PSF shaping using adaptive optics for threedimensional single-molecule super-resolution imaging and tracking. Opt. Exp 20, 4957-4967 (2012).
43.A. Kus, W. Krauze, and M. Kujawinska, Active limited-angle tomographic phase microscope. J. Biomed. Opt 20, 111216 (2015).
44.A. Ashkin, Acceleration of trapping of particles by radiation pressure, Phys. Rev. Lett. 24, 156–159 (1970).
45.V. S. Letokhov, The narrowing of Doppler broadened line in standing light wave, Pis’ ma Zh. Eksp. Teor. Fiz. 7, 348–351 (1968).
46.X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, Micro-optical elements for optical manipulation, Opt. Photon. News 7, 36–41 (2006).
47.V. Arrizón, U. Ruiz, D. Sánchez-de-la-Llave, G. Mellado-Villaseñor, and A. S. Ostrovsky, Optimum generation of annular vortices using phase diffractive optical elements, Opt. Lett. 40, 1173–1176 (2015).
48.I. Augustyniak, A. Popiołek-Masajada, J. Masajada, and S. Drobczy´ nski, New scanning technique for the optical vortex microscope, Appl. Opt. 51, C117–C124 (2012).
49.J. Ng, Z. Lin, and C. T. Chan, Theory of optical trapping by an optical vortex beam, Phys. Rev. Lett. 104, 103601 (2010).
50.K. T. Gahagan and G. A. Swartzlander, Trapping of low-index microparticles in an optical vortex, J. Opt. Soc. Am. B 15, 524–534 (1998).
51.M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass, Appl. Phys. Lett. 98, 201101 (2011).
52.M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, Single beam optical vortex tweezers with tunable orbital angular momentum, Appl. Phys. Lett. 104, 231110 (2014).
53.K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, Orbital angular momentum of a high-order Bessel light beam, J. Opt. B 4, S82–S89 (2002).
54.W. G. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Dholakia, and H. Wang, Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation, Appl. Phys. Lett. 85, 5784–5786 (2004).
55.N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, Generation of optical phase singularities by computer-generated holograms, Opt. Lett. 17, 221–223 (1992).
56.V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, Optical levitation in a Bessel light beam, Appl. Phys. Lett. 85, 4001–4003 (2004).
57.A. Vasara, J. Turunen, and A. T. Friberg, Realization of general nondiffracting beams with computer-generated holograms, J. Opt. Soc. Am. A 6, 1748–1754 (1989).
58.A. Vijayakumar and S. Bhattacharya, Compact generation of superposed higher-order Bessel beams via composite diffractive optical elements, Opt. Eng. 54, 111310 (2015).
59.B. Zhang and D. Zhao, Focusing properties of Fresnel zone plates with spiral phase, Opt. Express 18, 12818–12823 (2010).
60.A. Vijayakumar and S. Bhattacharya, Design, fabrication, and evaluation of a multilevel spiral-phase Fresnel zone plate for optical trapping, Appl. Opt. 51, 6038–6044 (2012).
61.A. Vijayakumar and S. Bhattacharya, Design of multifunctional diffractive optical elements, Opt. Eng. 54, 024104 (2015).
62.P. Vaity and L. Rusch, Perfect vortex beam: Fourier transformation of a Bessel beam, Opt. Lett. 40, 597–600 (2015).
63.I. V. Minin and O. V. Minin, Basic Principles of Fresnel Antenna Arrays (Springer, 2008).
64.L. J. Janicijevic, Diffraction characteristics of square zone plates, J. Opt. 13, 199–206 (1982).
65.I. V. Minin, O. V. Minin, A. Petosa, and S. Thirakoune, Improved zoning rule for designing square Fresnel zone plate lenses, Microw. Opt. Technol. Lett. 49, 276–278 (2007).
66.B. Zhang and D. Zhao, Square Fresnel zone plate with spiral phase for generating zero axial irradiance, Opt. Lett. 35, 1488–1490 (2010).
67.I. V. Minin, O. V. Minin, E. G. Danilov, and G. S. Lbov, Parameters optimization algorithm of a new type of diffraction optics elements, in Proceedings of 5th IEEE-Russia Conference on Microwave Electronics: Measurement, Identification, Applications (MEMIA), pp. 177–185, (2005).
68.I. V. Minin and O. V. Minin, Array of Fresnel zone plate lens antennas: circular, hexagonal with chiral symmetry and hexagonal boundary, in Digest of the Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics, p. 270 (2006).
69.N. Gao, C. Xie, C. Li, C. Jin, and M. Liu, Square optical vortices generated by binary spiral zone plates, Appl. Phys. Lett. 98, 151106 (2011).
70.A. Vijayakumar, M. Uemukai, and T. Suhara, Phase-shifted Fresnel zone lenses for photomixing generation of coherent THz wave, Jpn. J. Appl. Phys. 51, 070206 (2012).
71.J. Alda, J. M. Rico-Garcia, F. J. Salgado-Remacha, and L. M. Sanchez-Brea, Diffractive performance of square Fresnel zone plates, Opt. Commun. 282, 3402–3407 (2009).
72.B. C. Kress and P. Meyrueis, Applied Digital Optics (Wiley, 2009).
73.U. S. Kivshar and E. A. Ostrovskaya, Optical vortices folding and twisting waves of light, Opt. Photon. News 12, 24–28 (2001).
74.V. Kumar and N. K. Viswanathan, Topological structures in the Poynting vector field: an experimental realization, Opt. Lett. 38, 3886–3889 (2013).
75.A. Y. Bekshaev and M. S. Soskin, Transverse energy flows in vectorial fields of paraxial beams with singularities, Opt. Commun. 271, 332–348 (2007).
76.A. Vijayakumar, P. Parthasarathi, S. S. Iyengar, R. Selvan, S. Ananthamurthy, S. Bhattacharya, and S. Bhattacharya, Conical Fresnel zone lens for optical trapping, Proc. SPIE 9654, 965426 (2015).
77.M. Bacia, W. Lamperska, J. Masajada, S. Drobczynski, and M. Marc, Polygonal micro-whirlpools induced in ferrofluids, Opt. Appl. 45, 309–316 (2015).
78.A. Vijayakumar, B. Vinoth, I. V. Minin, J. Rosen, O. V. Minin, and C. J. Cheng, Experimental demonstration of square Fresnel zone plate with chiral side lobes. Appl. Opt 56, F128-F133 (2017).
79.R. W. Gerchberg, and W. O. Saxton, A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures, Optik. 35, 237-246 (1972).
80.D. Anselmetti, Single Cell Analysis: Technologies and Applications, Wiley-Blackwell (2009).
81.T. Konry, A. Golberg, and Martin Yarmush, Live single cell functional phenotyping in droplet nano-liter reactors. Sci. Rep. 3, 3179 (2013).
82.E. Cuche, P. Marquet, and C. Depeursinge, Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. 38, 6994-7001 (1999).
83.M. K. Kim, Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography. Opt. Exp. 7, 305-310 (2000).
84.N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy. Elsevier (2013).
85.S. Vertu, J. Flügge, J.-J. Delaunay, and O. Haeberlé, Improved and isotropic resolution in tomographic diffractive microscopy combining sample and illumination rotation. Central Eur. J. Phys. 9, 969-974 (2011).
86.P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis (Springer, 2011).
87.T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. Scott Carney, L. L. Goddard, and G. Popescu, White-light diffraction tomography of unlabeled live cells. Nature Photonics 8, 256-263 (2014).
88.S. Vertu, I. Yamada, J.-J. Delaunay, O. Haeberlé, and J. Flüge, Diffraction microtomography with sample rotation: primary result on the influence of a missing apple core in the recorded frequency space. Proc. SPIE 7390, 7390-1D (2009).
89.M. Kujawińska, W. Krauze, A. Kuś, J. Kostencka, T. Kozacki, B. Kemper and M. Dudek, Problems and solutions in 3-D Analysis of Phase Biological Objects by Optical Diffraction Tomography. Int. J. Optomechatronics. 8, 357-372 (2014).
90.B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera and O. Haeberlé, Tomographic diffractive microscopy with isotropic resolution. Optica 4, 460-463 (2017).
91.J. Kostencka, T. Kozacki, and M. Józwik, Holographic tomography with object rotation and two-directional off-axis illumination. Opt. Exp. 25, 23920-23934 (2017).
92.Y. C. Lin, H. C. Chen, H. Y. Tu, C. Y. Liu, and C. J. Cheng, Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy, Opt. Lett. 42, 1321-1324 (2017).
93.M. Habaza, M. Kirschbaum, C. Guernth‐Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, Rapid 3D Refractive-index Imaging of Live Cells in Suspension without labelling Using Dielectrophoretic Cell Rotation. Adv Sci. 4, 1600205 (2017).
94.F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale and P. Ferraro, Tomographic flow cytometry by digital holography, Light: Science and Application 6, e16241 (2017).
95.J. R. Heath, A. Ribas, and P. S. Mischel, Single-Cell analysis tools for drug discovery and development. Nature Rev Drug Discov. 15, 204-216 (2016).
96.B. Caoa, L. Kelbauskasa, S. Chana, R. M. Shettya, D. Smitha, and D. R. Meldruma, Rotation of single live mammalian cells using dynamic holographic optical tweezers, Opt. Lasers Eng. 92, 70-75 (2017).
97.K. Kim and Y. Park, Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps, Nature Communications 8, 15340 (2017).
98.B. Vinoth, X-J. Lai, Y-C. Lin, H-Y. Tu, and C-J. Cheng, Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution. Sci. Rep 8, 5943 (2018).
99.M. G. L. Gustafsson, D. A. Agard and J. W. Sedat, Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses, Proc. SPIE, 2412 (1995).
100.M. G. L. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, J. Microscopy. 198, 82-87 (2000).
101.D. Karadaglic, and T. Wilson, Image formation in structured illumination wide-field fluorescence microscopy. Micron. 39, 808-818 (2008).
102.F. Wei, and Z. Liu, Plasmonic structured Illumination microscopy. Nano Lett. 10, 2531-2536 (2010).
103.M. Saxena, G. Eluru, and S. S. Gorthi, Structured illumination microscopy. Adv. Opt. Photon. 7, 241-275 (2015).
104.R. Heintzmann, and T. Huser, Super-Resolution Structured Illumination Microscopy. Chem. Rev. 117, 13890-13908 (2017).
105.L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, Structured illumination microscopy of a living cell. Eur. Biophy. J. 38, 807-812 (2009).
106.M. F. Langhorst, J. Schaffer, and B. Goetze, Structure brings clarity: Structured illumination microscopy in cell biology. Biotech. J. 4, 858-865 (2009).
107.P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, Super-Resolution Video Microscopy of Live Cells by Structured Illumination. Nature Methods. 6, 339– 342 (2009).
108.J. Demmerle, et al. Strategic and practical guidelines for successful structured illumination microscopy. Nature Protocol 12, 988-1010 (2017).
109.S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy. Biomed Opt. Exp. 8, 2496–2518 (2017).
110.F. Kraus, et al. Quantitative 3D Structured Illumination Microscopy of Nuclear Structures. Nature Protocol 12, 1011– 1028 (2017).
111.S. Shin, D. Kim, K. Kim, and Park, Y. Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device. Sci. Rep. 8, 9183 (2018).
112.B-J. Chang, L. J. Chou, Y. C. Chang, and S. Y. Chiang, Isotropic image in structured illumination microscopy patterned with a spatial light modulator. Opt. Exp. 17, 14710-14721 (2009).
113.S. A. Shroff, J. R. Fienup, and D. R. Williams, Phase-shift estimation in sinusoidally illuminated images for lateral superresolution. J. Opt. Soc. Am. 26, 413-424 (2009).
114.E. S. Ortiga, M. M. Corral, G. Saavedra, and J. G. Sucerquia, Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination. Opt. Lett. 39, 2086-2089 (2014).
115.A. R. Halpern, G. C. M. Alas, T. J. Chozinski, A. R. Paredez, and J. C. Vaughan, Hybrid Structured Illumination Expansion Microscopy Reveals Microbial Cytoskeleton Organization. ACS Nano. 11, 12677-12686 (2017).
116.K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, Time-multiplexed structured illumination using a DMD for optical diffraction tomography, Opt. Lett. 42, 999-1002 (2017).
117.A. Hussain, J. L. Martínez, and J. Campos, Holographic superresolution using spatial light modulator. J Eur Opt Soc Rapid Publ. 8, 1990-2573 (2013).
118.Y. K. Kashter, A. Vijayakumar, Y. Miyamoto, and J. Rosen, Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination. Opt. Lett. 41, 1558-1561 (2016).
119.B. Bailey, V. Krishnamurthi, D. L. Farkas, D. L. Taylor, and F. Lanni. Three-dimensional imaging of biological specimens with standing wave fluorescence microscopy. Proc. SPIE. 2184, 208-213 (1994).
120.W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, Synthetic aperture-based on-chip microscopy. Light: Science and Application 4, e261 (2015).
121.X. J. Lai, C. J. Cheng, Y. C. Lin, and H. Y. Tu, Angular-polarization multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy. J. Opt 19, 055607 (2017).
122.A. Stadelmaier, and J. H. Massig, Compensation of lens aberrations in digital holography. Opt. Lett 25, 1630-1632 (2000).
123.T. Colomb, et al. Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram, Opt. Exp 14, 4300-4306 (2006).
124.F. Montfort, et al. Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position, J. Opt. Soc. Am 23, 2944-2953 (2006).
125.T. Nguyen, et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection, Opt. Exp 25, 15043-15057 (2017).
126.D. N. Deng, et al. Simple and flexible phase compensation for digital holographic microscopy with electrically tunable lens, Appl. Opt 56, 6007-6014 (2017).
127.L. H. Schaefer, D. Schuster, and J. Schaffer, Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach. J. Microscopy 216, 165-174 (2004).
128.M. J. Booth. Adaptive optics in microscopy. Phil. Trans. R. Soc. A 365, 2829–2843 (2007).
129.D. Debarre, E. J. Botcherby, M. J. Booth, and T. Wilson, Adaptive optics for structured illumination microscopy. Opt. Exp 16, 9290-9305 (2008).
130.N. Ji, D. E. Milkie, and E. Betzig, Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nature Methods 7, 141–147 (2010).
131.M. Booth, et al. Aberrations and adaptive optics in super-resolution microscopy. Microscopy 64, 251–261 (2015).
132.M. Pospiech, M. Emons, B. Vackenstedt, G. Palmer, and U. Morgner, Single-sweep laser writing of 3D-waveguide devices. Opt. Exp 18, 6994-7001 (2010).
133.R. J. Noll, Zernike polynomials and atmospheric turbulence, J. Opt. Soc. Am 66, 207–211 (1976).
134.M. A. A. Neil, M. J. Booth and T. Wilson, New modal wavefront sensor: a theoretical analysis. J. Opt. Soc. Am 17, 1098–1107 (2000).
135.B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy. Cell Biophys 23, 91 (1993).
136.H. Keisuke, et al. Significant correlation between refractive index and activity of mitochondria: single mitochondrion study, Biomed. Opt. Exp 6, 859-869 (2015).
137.B. Vinoth, H. Y. Tu, X. J. Lai, and C. J. Cheng, Adaptive wavefront correction structured illumination holographic tomography. Sci. Rep 9, 10489 (2019).
138.S. Kang, et al, High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering, Nature Comm. 8, 2157 (2017).
139.M. Chen, Z. F. Phillips and L. Waller, Quantitative differential phase contrast (DPC) microscopy with computational aberration correction, Opt. Exp 26, 32888-32899 (2018).
140.M. Kujawinska, W. Krauze, M. Baczewska, A. Kus and M. Ziemczonok, Comparative study of laboratory and commercial limited-angle holographic tomography setups, Proc. SPIE 10887, Quantitative Phase Imaging V, 1088708 (2019).
141.Warsaw University of Technology: Tomographic phase microscope http://biophase.pl/tomographic-phase-microscope/ (Accessed: 2019)