研究生: |
王品蓉 Pin-Rong Wang |
---|---|
論文名稱: |
熱休克蛋白過度表現及氧化壓力對SCA17細胞模式影響之研究 The Effects of HSPs Overexpression and Oxidative Stress in SCA17 Cell Model |
指導教授: |
李桂楨
Lee, Guey-Jen |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 第十七型脊髓小腦運動失調症 、熱休克蛋白 、氧化壓力 |
英文關鍵詞: | SCA17, heat shock protein, oxidative stress |
論文種類: | 學術論文 |
相關次數: | 點閱:245 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脊髓小腦運動失調症(spinocerebellar ataxias,簡稱SCAs)為體染色體顯性遺傳的神經退化性疾病,有超過28種的亞型。其中的遺傳性第十七型脊髓小腦運動失調症(SCA17)與染色體6q27位置TATA binding protein (TBP)基因的CAG三核苷重複擴增相關。突變的TBP蛋白具有延長的聚麩醯胺(polyQ)片段,可能導致蛋白質結構錯誤摺疊及聚集,而polyQ擴增造成的氧化壓力與疾病形成有關。當細胞處於氧化壓力下,會提升熱休克蛋白的表現,如HSPA5、HSPA8和HSPB1等監護蛋白(chaperones),以便抵抗氧化壓力所造成的傷害。監護蛋白可經由穩定錯誤摺疊蛋白的結構,降低聚集的生成,來緩和polyQ突變蛋白的毒性。藉由熱休克蛋白和氧化壓力與SCA17的關連性做探討,我們可以更瞭解SCA17的致病機轉,有助於疾病的改善或治療策略的發展。藉誘導式細胞模式的建立,本篇研究結果顯示擴增polyQ的TBP蛋白聚集在細胞核中,且細胞週期呈現較高的sub G1%。表現擴增polyQ的TBP使細胞活性氧分子產量增加,且對staurosporine處理的敏感度提升及缺血清的耐受度下降。短暫表現TBP的細胞模式顯示,HSPA5、HSPA8和HSPB1的過度表現可以降低聚集的生成。
Autosomal dominant spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative disorders involving progressive degeneration of the cerebellum, brainstem, and spinal tract. More than 28 subtypes have been reported. SCA17 is caused by an expanded polyglutamine (polyQ) in a general transcription initiation factor, the TATA-box binding protein (TBP). The mutated TBP with polyQ expansion causes a conformational change to promote misfolding and aggregation. Futhermore, a polyQ mutation can induce reactive oxygen species (ROS) that directly contribute to cell death. During oxidative stress, synthesis of several heat shock proteins (such as HSPA5, HSPA8 and HSPB1 chaperones) increase to protect cells against oxidative stress. Chaperones may modulate polyQ protein toxicity by stabilizing the misfolded conformation to reduce aggregate formation. Investigation of chaperones and oxidative stress associated with SCA17 may not only contribute to the understanding of molecular mechanism of the disease but also provide therapeutic strategy to slow down the disease progression. By establishing stably induced cell model, the study results revealed that TBP with expanded polyQ formed nuclear aggregates with significant increase in sub G1 phase of cell cycle. Cells expressed polyQ-expanded TBP display increased ROS production and increased sensitivity to staurosporine treatment and serum deprivation. Using transient cell model, HSPA5, HSPA8 and HSPB1 overexpression can reduce aggregate formation.
李麗卿(2009)。第十七型脊髓小腦共濟失調症致病機轉:伴隨蛋白的保護功能與TATA結合蛋白CAG三核苷重複擴增造成不正常蛋白質折疊之研究。國立台灣師範大學生命科學系九十七學年度博士論文。
Albers DS, Beal MF (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl 59:133-154.
Alonso I, Costa C, Gomes A, Ferro A, Seixas AI, Silva S, Cruz VT, Coutinho P, Sequeiros J, Silveira I (2005) A novel H101Q mutation causes PKCgamma loss in spinocerebellar ataxia type 14. J Hum Genet 50:523-529.
Anttonen AK, Mahjneh I, Hamalainen RH, Lagier-Tourenne C, Kopra O, Waris L, Anttonen M, Joensuu T, Kalimo H, Paetau A, Tranebjaerg L, Chaigne D, Koenig M, Eeg-Olofsson O, Udd B, Somer M, Somer H, Lehesjoki AE (2005) The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet 37:1309-1311.
Bauer P, Laccone F, Rolfs A, Wullner U, Bosch S, Peters H, Liebscher S, Scheible M, Epplen JT, Weber BHF, Holinski-Feder E, Weirich-Schwaiger H, Morris-Rosendahl DJ, Andrich J, Riess O (2004) Trinucleotide repeat expansion in SCA17/TBP in white patients with Huntington's disease-like phenotype. J Med Genet 41:230-232.
Belay HT, Brown IR (2006) Cell death and expression of heat-shock protein Hsc70 in the hyperthermic rat brain. J Neurochem 97 Suppl 1:116-119.
Bernardini C, Fantinati P, Zannoni A, Forni M, Tamanini C, Bacci ML (2004) Expression of HSP70/HSC70 in swine blastocysts: effects of oxidative and thermal stress. Mol Reprod Dev 69:303-307.
Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001) Increased oxidative damage to DNA in a transgenic mouse model of huntington's disease. J Neurochem 79:1246-1249.
Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in huntington's disease: Selective vulnerability of the basal ganglia. Ann Neurol 41:646-653.
Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in huntington's disease. Brain Pathol 9:147-163.
Brusse E, de Koning I, Maat-Kievit A, Oostra BA, Heutink P, van Swieten JC (2006) Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord 21:396-401.
Chen CM, Lane HY, Wu YR, Ro LS, Chen FL, Hung WL, Hou YT, Lin CY, Huang SY, Chen IC, Soong BW, Li ML, Hsieh-Li HM, Su MT, Lee-Chen GJ (2005) Expanded trinucleotide repeats in the TBP/SCA17 gene mapped to chromosome 6q27 are associated with schizophrenia. Schizophr Res 78:131-136.
Chou AH, Yeh TH, Kuo YL (2006) Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiol Dis 21:333-345.
Cooper JK, Schilling G, Peters MF, Herring WJ, Sharp AH, Kaminsky Z, Masone J, Khan FA, Delanoy M, Borchelt DR, Dawson VL, Dawson TM, Ross CA (1998) Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Human Molecular Genetics 7:783-790.
David G, Abbas N, Stevanin G, Duerr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Brice A (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17:65-70.
De Michele G, Maltecca F, Carella M, Volpe G, Orio M, De Falco A, Gombia S, Servadio A, Casari G, Filla A, Bruni A (2003) Dementia, ataxia, extrapyramidal features, and epilepsy: Phenotype spectrum in two italian families with spinocerebellar ataxia type 17. Neurol Sci 24:166-167.
DiFiglia M, Sapp E, Chase KO (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990-1993.
Duenas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain 129:1357-1370.
Filla A, De Michele G, Cocozza S, Patrignani A, Volpe G, Castaldo I, Ruggiero G, Bonavita V, Masters C, Casari G, Bruni A (2002) Early onset autosomal dominant dementia with ataxia, extrapyramidal features, and epilepsy. Neurology 58: 922-928.
Friedman MJ, Shah AG, Fang Z, Ward EG, Warren ST, Li S, Li X (2007) Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci 10:1519-1528.
Fujigasaki H, Martin JJ, De Deyn PP, Camuzat A, Deffond D, Stevanin G, Dermaut B, Van Broeckhoven C, Dürr A, Brice A (2001) CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain 124:1939-1947.
Galli F, Piroddi M, Annetti C, Aisa C, Floridi E, Floridi A (2005) Oxidative stress and reactive oxygen species. Contrib Nephrol 149:240-260.
Hagenah JM, Zuhlke C, Hellenbroich Y, Heide W, Klein C (2004) Focal dystonia as a presenting sign of spinocerebellar ataxia 17. Mov Disord 19:217-220.
Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852-1858.
Hernandez D, Hanson M, Singleton A, Gwinn-Hardy K, Freeman J, Ravina B, Doheny D, Gallardo M, Weiser R, Hardy J, Singleton A (2003) Mutation at the SCA17 locus is not a common cause of parkinsonism. Parkinsonism Relat Disord 9:317-320.
Holmes SE, O'Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, Kwak NG, Ingersoll-Ashworth RG, Sherr M, Sumner AJ, Sharp AH, Ananth U, Seltzer WK, Boss MA, Vieria-Saecker AM, Epplen JT, Riess O, Ross CA, Margolis RL (1999) Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet 23:391-392.
Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, Stevanin G, Dürr A, Zühlke C, Bürk K, Clark HB, Brice A, Rothstein JD, Schut LJ, Day JW, Ranum LP (2006) Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 38:184-190.
Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N, Durr A, Didierjean O, Stevanin G, Agid Y, Brice A (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14:285-291.
Kakiuchi C, Ishiwata M, Nanko S, Kunugi H, Minabe Y, Nakamura K, Mori N, Fujii K, Umekage T, Tochigi M, Kohda K, Sasaki T, Yamada K, Yoshikawa T, Kato T (2005) Functional polymorphisms of HSPA5: possible association with bipolar disorder. Biochem Biophys Res Commun 336:1136-1143.
Kang S, Song J, Kang H, Kim S, Lee Youngki, Park D (2003) Insulin can block apoptosis by decreasing oxidative stress via phosphatidylinositol 3-kinase- and extracellular signal-regulated protein kinase-dependent signaling pathways in HepG2 cells. Eur J Endocrinol 148:147-155.
Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Kakizuka A (1994) CAG expansions in a novel gene for machado-joseph disease at chromosome 14q32.1. Nat Genet 8:221-228.
Kiang JG, Tsokos GC (1998) Heat Shock Protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacol Ther 80:183-201.
Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T, Saito M, Tomoda A, Miike T, Naito H, Ikuta F, Tsuji S (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6:9-13.
Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: A new polyglutamine disease? Hum Mol Genet 8:2047-2053.
Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, Ranum LP (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 21:379-384.
Lee LC, Chen CM, Chen FL, Lin PY, Hsiao YC, Wang PR, Su MT, Hsieh-Li HM, Hwang JC, Wu CH, Lee GC, Singh S, Lin Y, Hsieh SY, Lee-Chen GJ, Lin JY (2009) Altered expression of HSPA5, HSPA8 and PARK7 in spinocerebellar ataxia type 17 identifeid by 2-dimensional fluorescence difference in gel electrophoresis. Clinica Chimica Acta 400:56-62.
Lin IS, Wu RM, Lee-Chen GJ, Shan DE, Gwinn-Hardy K (2007) The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat Disord 13:246-249.
Lo WY, Liu KF, Liao IC, Song YL (2004) Cloning and molecular characterization of heat shock cognate 70 from tiger shrimp (Penaeus monodon). Cell Stress Chaperones 9:332-343.
Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, Bruni A, Cocozza S, Casari G, Servadio A, De Michele G (2003) Intergenerational instability and marked anticipation in SCA-17. Neurology 61:1441-1443.
Manto M (2005) The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4:2-6.
Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 26:191-194.
Mitsui K, Nakayama H, Akagi T, Nekooki M, Ohtawa K, Takio K, Hashikawa T, Nukina N (2002) Purification of polyglutamine aggregates and identification of elongation factor-1alpha and heat shock protein 84 as aggregate-interacting proteins. J Neurosci 22:9267-9277.
Nakamura K, Jeong S, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10:1441-1448.
Ng H, Pulst SM, Huynh DP (2007) Ataxin-2 mediated cell death is dependent on domains downstream of the polyQ repeat. Exp Neurol 208(2):207-215.
Ohtsuka K, Hata M (2000) Molecular chaperone function of mammalian Hsp70 and Hsp40--a review. Int J Hyperthermia 16:231-245.
Ohtsuka K, Suzuki T (2000) Roles of molecular chaperones in the nervous system. Brain Res Bull 53:141-146.
Orr HT, Chung M, Banfi S, Kwiatkowski TJ,Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LPW, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221-226.
Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN (1998) Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol 143:1457-1470.
Perez-Severiano F, Escalante B, Vergara P, Ríos C, Segovia J (2002) Age-dependent changes in nitric oxide synthase activity and protein expression in striata of mice transgenic for the huntington's disease mutation. Brain Res 951:36-42.
Pias EK and Aw TY (2002) Early redox imbalance mediates hydroperoxide-induced apoptosis in mitotic competent undifferentiated PC-12 cells. Cell Death Differ 9(9):1007-1016.
Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen X, Lopes-Cendes I, Pearlman S, Starkman S, Orozoco-Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Sahba S (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14:269-276.
Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585-595.
Reid SJ, Rees MI, van Roon-Mom WMC, Jones AL, MacDonald ME, Sutherland G, During MJ, Faull RLM, Owen MJ, Dragunow M, Snell RG (2003) Molecular investigation of TBP allele length: A SCA17 cellular model and population study. Neurobiol Dis 13:37-45.
Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, Schöls L, Riess O (2003) Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 54:367-375.
Ryu H, Lee J, Olofsson BA, Mwidau A, Deodoglu A, Escudero M, Flemington E, Azizkhan-Clifford J, Ferrante RJ, Ratan RR (2003) Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci USA 100:4281-4286.
Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU (2002) Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci USA 99 Suppl 4:16412-16418.
Schmidt T, Lindenberg KS, Krebs A, Schöls L, Laccone F, Herms J, Rechsteiner M, Riess O, Landwehrmeyer GB (2002) Protein surveillance machinery in brains with spinocerebellar ataxia type 3: Redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann Neurol 51:302-310.
Shim JK, Jung DO, Park JW, Kim DW, Ha DM, Lee KY (2006) Molecular cloning of the heat-shock cognate 70 (Hsc70) gene from the two-spotted spider mite, Tetranychus urticae, and its expression in response to heat shock and starvation. Comp Biochem Physiol B Biochem Mol Biol 145:288-295.
Silveira I, Miranda C, Guimarães L, Moreira M-, Alonso I, Mendonça P, Ferro A, Pinto-Basto J, Coelho J, Ferreirinha F, Poirier J, Parreira E, Vale J, Januário C, Barbot C, Tuna A, Barros J, Koide R, Tsuji S, Holmes SE, Margolis RL, Jardim L, Pandolfo M, Coutinho P, Sequeiros J (2002) Trinucleotide repeats in 202 families with ataxia: A small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 59:623-629.
Stevanin G, Hahn V, Lohmann E, Bouslam N, Gouttard M, Soumphonphakdy C, Welter ML, Ollagnon-Roman E, Lemainque A, Ruberg M, Brice A, Durr A (2004) Mutation in the catalytic domain of protein kinase C gamma and extension of the phenotype associated with spinocerebellar ataxia type 14. Arch Neurol 61:1242-1248.
Tissières A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389-398.
Trushina E, McMurray CT (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145:1233-1248.
Tsai HF, Lin SJ, Li C, Hsieh M (2005) Decreased expression of Hsp27 and Hsp70 in transformed lymphoblastoid cells from patients with spinocerebellar ataxia type 7. Biochem Biophys Res Commun 334:1279-1286.
van de Warrenburg BP, Verbeek DS, Piersma SJ, Hennekam FA, Pearson PL, Knoers NV, Kremer HP, Sinke RJ (2003) Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. Neurology 61:1760-1765.
Wang HL, Yeh TH, Chou AH (2006) Polyglutamine-expanded ataxin-7 activates mitochondrial apoptotic pathway of cerebellar neurons by upregulating Bax and downregulating Bcl-x(L). Cell Signal 18:541-552.
Warrick JM, Chan HYE, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425-428.
Wen FC, Li YH, Tsai HF (2003) Down-regulation of heat shock protein 27 in neuronal cells and non-neuronal cells expressing mutant ataxin-3. FEBS Letters 546:307-314.
Wu YR, Fung HC, Lee-Chen GJ, Gwinn-Hardy K, Ro LS, Chen ST, Hsieh-Li HM, Lin HY, Lin CY, Li SN, Chen CM (2005) Analysis of polyglutamine-coding repeats in the TATA-binding protein in different neurodegenerative diseases. J Neural Transm 112:539-546.
Wu YR, Lin HY, Chen CM, Gwinn-Hardy K, Ro LS, Wang JC, Li SH, Hwang JC, Fang K, Hsieh-Li HM, Li ML, Tung LC, Su MT, Lu KT, Lee-Chen GJ (2004) Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson's disease. Clin Genet 65:209-214.
Wullner U (2003) Genes implicated in the pathogenesis of spinocerebellar ataxias. Drugs Today 39:927-937.
Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo A, Rubinsztein DC (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 11:1137-1151.
Wyttenbach A, Swartz J, Kita H, Thykjaer T, Carmichael J, Bradley J, Brown R, Maxwell M, Schapira A, Orntoft TF, Kato K, Rubinsztein DC (2001) Polyglutamine expansions cause decreased CRE-mediated transcription and early gene expression changes prior to cell death in an inducible cell model of Huntington's disease. Hum Mol Genet 10:1829-1845.
Yabe I, Sasaki H, Chen DH, Raskind WH, Bird TD, Yamashita I, Tsuji S, Kikuchi S, Tashiro K (2003) Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol 60:1749-1751.
Zhang YQ, Sarge KD (2007) Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J Mol Med 85:1421-1428.
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15:62-69.
Zühlke C, Hellenbroich Y, Dalski A, Kononowa N, Hagenah J, Vieregge P, Riess O, Klein C, Schwinger E (2001) Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Ggenet 9:160-164.
Zühlke CH, Spranger M, Spranger S, Voigt R, Lanz M, Gehlken U, Hinrichs F, Schwinger E (2003) SCA17 caused by homozygous repeat expansion in TBP due to partial isodisomy 6. Eur J Hum Genet 11:629-632.