簡易檢索 / 詳目顯示

研究生: 謝祥予
Sie, Siang-Yu
論文名稱: 鐵在紅熒烯/矽(100)上磁性與結構之研究
Magnetic Properties and Structures of Fe/ rubrene/ Si(100) films
指導教授: 蔡志申
Tsay, Jyh-Shen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 71
中文關鍵詞: 紅熒烯磁光柯爾效應矯頑力
英文關鍵詞: rubrene, iron, magneto-optical Kerr effect, coercivity
DOI URL: http://doi.org/10.6345/THE.NTNU.DP.010.2018.B04
論文種類: 學術論文
相關次數: 點閱:272下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來研究指出,鐵磁性材料能受紅熒烯影響晶體結構,而本實驗室近年來研究亦指出鐵磁材料鈷受到紅熒烯介面影響到磁性表現,鐵磁材料鐵受到紅熒烯的影響,產生磁性與結構上的變化,成為本篇研究重點。本研究利用磁光柯爾效應儀、校內合作原子力顯微鏡與磁光柯爾顯微鏡、校外X光繞射與X光電子能譜儀,去探討射頻磁控濺鍍鐵薄膜在蒸鍍成長紅熒烯的系統於矽(100)之上。第一部分在鐵/矽(100)系統中,磁性量測矯頑力隨鐵薄膜厚度增加的變化,矯頑力從25奈米的60 Oe 巨幅上升至30奈米的120 Oe左右,而在鐵約27奈米設為轉變點,並透過X光繞射確認鐵薄膜40奈米以前為bcc結構排列;而在鐵/紅熒烯/矽(100)系統中透過加入不同厚度紅熒烯,觀察上層鐵薄膜的磁性變化,在紅熒烯厚度約1奈米,鐵的矯頑力上升轉變點的厚度提前,當紅熒烯厚度達4、12奈米,矯頑力上升的厚度提前至8奈米,透過X光繞射觀察在加入紅熒烯後發現,鐵薄膜bcc(110)的結晶性上升,其應力增加導致鐵薄膜磁異向能上升使矯頑力增加,而X光電子能譜發現鐵與紅熒烯之間產生介面效應,導致上層鐵薄膜的結構不同;第三部分觀察磁域翻轉模式在鐵薄膜厚度達15奈米以後為大片狀翻轉,在加入紅熒烯時鐵薄膜較薄時呈現細條狀翻轉,鐵薄膜27奈米以後則呈現大片狀翻轉,結合X光繞射分析晶粒大小與原子力顯微鏡分析顆粒在有無加入紅熒烯的不同導致磁域翻轉的變化。

    In recent years, some research works show that the crystalline structures of ferromagnetic materials can be modified by rubrene additives. Previous studies from our group indicate that magnetic properties of cobalt depends on the preparation method of the Co/rubrene interface. The influence of rubrene on the magnetic properties and crystalline structures of ferromagnetic material iron draws our attentions. In this research work, magneto-optical Kerr effect, magneto-optical Kerr microscope, atomic force microscope, x-ray diffraction and x-ray photoelectron spectroscopy are employed. The RF magnetron sputtering was used to grow iron film and evaporation was used to grow rubrene film in Fe/rubrene/Si(100) systems. In the first part we study magnetic properties of Fe/Si(100). When the thickness of the iron film increases, the coercive force increases from 60 Oe at 25 nm to about 120 Oe at 30 nm. The transform point was around at 27 nm iron. Experimental evidences given by x-ray diffraction show that the iron film is in the bcc structure for iron thinner than 40 nm. In the second part, Fe/rubrene/Si(100) with different rubrene thicknesses are discussed. For the rubrene thickness is 1 nanometer, the thickness of coercive force transform point for iron film is decreased. When the rubrene thickness is 4, 12 nm, the coercivity transform point decreased to 8 nm iron. From XRD measurement, the crystallization of the Fe bcc (110) for the Fe/rubrene film was increased. It results in an increase of the magnetic anisotropy energy for iron film due to increase of stress. Therefore, the coercive force is increased. XPS shown that chemical shift between Fe and rubrene interface are confirmed. Which result in the different of iron film’s crystal structure. In the last part we study the domain reversal mode of iron film. A large domain shape was observed after the thickness of the iron film reach 15 nm. When the rubrene layer is added, the domain tends to be small flake like shape when the thickness of the iron film is thinner than 27 nm. A large domain shape was observed after 27 nm. Combined with XRD studies of grain sizes and AFM studies of particle sizes, the addition of the rubrene result in the different of magnetic domain sizes was observed.

    第一章 緒論 1 第二章 基本介紹 5 2-1 材料物理性質介紹 5 2-1-1 矽(Silicon) 5 2-1-2 鐵(Fe) 6 2-1-3 紅熒烯(Rubrene) 8 2-2 奈米薄膜製程與沉積原理 11 2-2-1 奈米薄膜製程 11 2-2-2 薄膜沉積原理 12 2-3 磁性物質 12 2-3-1 磁性物質的分類 12 2-3-2 磁化過程 15 2-4 濺鍍 16 2-4-1 電漿(Plasma)原理 16 2-4-2 直流DC濺鍍(Planar Diode Sputtering) 17 2-4-3 射頻濺鍍(Radio Frequency Sputtering, RF Sputtering) 17 2-5 X光繞射 18 2-5-1 布拉格繞射 18 2-5-2 Scherrer’s equation 19 2-6 X 光電子能譜儀 19 2-6-1 原理 20 2-6-2 應用 21 第三章 儀器與原理 23 3-1 超高真空系統 23 3-1-1 抽氣系統 23 3-1-2 機械幫浦(Mechanical pump) 24 3-1-3 渦輪分子幫浦 24 3-1-4 磁浮軸承 25 3-1-5 壓力量測系統 25 3-1-6 蒸鍍系統 25 3-1-7 濺鍍系統 26 3-1-8 冷卻系統 27 3-1-9 氣體流量控制器 27 3-2 原子力顯微鏡(Atomic Force Microscope) 27 3-2-1 原理 28 3-2-2 探針 28 3-2-3 原子力顯微鏡的種類 29 3-2-4 輕敲式原子力顯微鏡 29 3-3 大氣磁光柯爾效應儀 30 3-3-1 磁光柯爾效應理論 30 3-3-2 磁光柯爾效應儀器裝置 32 3-3-3 磁光柯爾效應儀使用之器材與元件: 32 3-4 柯爾顯微鏡 34 3-4-1 原理 34 3-4-2 柯爾顯微鏡儀器裝置 34 3-4-3 柯爾顯微鏡儀器使用之器材與元件: 36 第四章 實驗結果與討論 38 4-1 實驗方法 38 4-1-1 樣品準備 38 4-1-2 鍍率量測 39 4-1-3 實驗方式 41 4-2 鐵薄膜/紅熒烯薄膜/矽(100)系統磁性與結構 42 4-2-1 鐵薄膜/紅熒烯薄膜/矽(100)系統的磁性趨勢 42 4-2-2 鐵薄膜/紅熒烯薄膜/矽(100)的結構 49 4-3 鐵薄膜/紅熒烯薄膜/矽(100)基板磁域與顆粒直徑 56 4-3-1 鐵薄膜/紅熒烯薄膜/矽(100)的磁域形式 56 4-3-2 鐵薄膜/紅熒烯薄膜/矽(100)的顆粒直徑 58 4-3-3 鐵薄膜在加入紅熒烯前後晶粒大小與顆粒直徑的比較 65 4-4 未來展望 67 第五章 結論 68 參考資料 69

    【1】 Y. Kitamura, E. Shikoh, S. Zulkarnaen Bisri, T. Takenobu and M. Shiraishi, Appl. Phys. Lett., 99.4, 043505 (2011)
    【2】 Y. J. Hou, C. K. Yang, C. Y. Hsu, Y. W. Jhou and J. S. Tsay, Appl. Surf. Sci., 354, 139 (2015)
    【3】 V. A. Dediu, L. E. Hueso, I. Bergenti and C. Taliani, Nat. Mater. 8, 707 (2009)
    【4】 Y. L. Chan, Y. J. Hung, C. H. Wang, Y. C. Lin, C. Y. Chiu, Y. L. Lai, H. T. Chang, C. H. Lee, Y. J. Hsu and D. H. Wei, Phys. Rev. Lett. 104.17, 177204 (2010)
    【5】 D. H. Wei, Y. L. Chan, Y. J. Hung, C. H. Wang, Y. C. Lin, Y. L. Lai, H. T. Chang, C. H. Lee and Y. J. Hsu, Synth. Met. 161, 581 (2011)
    【6】 Y. Kitamura, E. Shikoh, K. Sawabe, T. Takenobu and M. Shiraishi, Appl. Phys. Lett., 101.7, 073501 (2012)
    【7】 A. Hubert and R. Schäfer, Magnetic domains: the analysis of magnetic microstructures, Corrected edition, Springer Science & Business Media, Heidelberg, (2008)
    【8】 M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau and F. Petroff, Phys. Rev. Lett., 61(21), 2472 (1988)
    【9】 Z. H. Xiong, D. Wu, Z. V. Vardeny and J. Shi, Nature, 427.6977, 821 (2004)
    【10】 J. W. Yoo, H. W. Jang, V. N. Prigodin, C. Kao, C. B. Eom and A. J. Epstein, Phys. Rev. B, 80(20), 205207 (2009)
    【11】 C. Y. Hsu, W. H Chen, J. L. Tsai and J. S. Tsay, J. Alloys Compd., 576, 393 (2013)
    【12】 C. H. Lin, W. H. Chen, J. S. Tsay, I. T. Hong, C. H. Chiu and H. S. Huang, Thin Solid Films, 519(23), 8379-8383 (2011)
    【13】 李乃平,微電子器件工藝,23,華中理工大學出版社,武漢市 (1995)
    【14】 K. Kobashi, Diamond films: chemical vapor deposition for oriented and heteroepitaxial growth, Chapter 2, 9, Elsevier Inc., London (2010)
    【15】 JCPDS International Centre for Diffraction Data (JCPDS - ICDD) PDF number 06-0696.
    【16】 J. E. Greedan, Magnetic oxides in Encyclopedia of Inorganic chemistry, R. B. King, John Wiley & Sons Inc., volume 8, New York (1994)
    【17】 B. Ghebouli, S. M. Chérif, A. Layadi, B. Helifa and M. Boudissa, J. Magn. Magn. Mater., 312(1), 194-199 (2007)
    【18】 W. H. Taylor, Zeitschrift für Kristallographie-Crystalline Materials, 93, 1-6, 151-155 (1936)
    【19】 S. A. Akopyan, R. L. Avoyan and Yu. T. Struchkov, Z.H. Strukt. Khim. 3, 602 (1962)
    【20】 D. E. Henn, W. G. Williams and D. J. Gibbons, J. Appl. Crystallogr., 4(3), 256 (1971)
    【21】 M. Nothaft, and J. Pflaum, physica status solidi (b), 245(5), 788-792 (2008)
    【22】 R. W. I. de Boer, M. E. Gershenson, A. F. Morpurgo and V. Podzorov, phys. stat. sol. (a), 201(6), 1302 – 1331 (2004)
    【23】 O. D. Jurchescu, Molecular organic semiconductors for electronic devices, MSC PhD thesis series 2006-15, Chapter 6, 103, University Library Groningen][Host], Enschede (2006)
    【24】 羅正忠,龔正-譯,半導體元件物理:與其在積體電路上的應用第三版,歐亞書局有限公司,新北市 (2007)
    【25】 J. A. C. Bland and B. Heinrich, Magnetic anisotropy, magnetization and band structure, in Ultrathin Magnetic Structures I, 21-90, Springer, Berlin, Heidelberg (1994)
    【26】 C. Kittel, Introduction of Solid State Physics, 7th Ed., John Wiley & Sons Inc., New York (1996)
    【27】 D. J. Griffiths, Introduction of Electrodynamics, Addison Wesley Inc., New York (1981)
    【28】 J. Nogues and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999)
    【29】 蔡志申,表面磁光科爾效應與超薄膜磁性性質,物理雙月刊(廿五卷五期),605,台灣物理學會,臺北市 (2003)
    【30】 Y. E. Wu, J. S. Tsay, S. C. Chen, T. Y. Fu and C. S. Shern, Jpn. J. Appl. Phys. Part 1, 40(12R), 6825 (2001)
    【31】 J. D. Jackson, Classical Electrodynamics, 3rd Ed., Chapter 8, 352, John Wiley & Sons Inc., New York (1999)
    【32】 李世鴻,積體電路製程技術,156,五南書局出版公司,臺北市 (1998)
    【33】 許智瑜,紅熒烯/鈷雙層結構在矽(100)上的結構與磁性研究,國立臺灣師範大學碩士論文,臺北市 (2012)
    【34】 D. A. Skoog, F. J. Holler and S. R. Crouch, Principles of Instrumental Analysis, 6th Ed., Thomson Brooks/Cole, Belmont (2007)
    【35】 O. Glatter and O. Kratky Eds., Small Angle X-ray Scattering, Academic Press, New York (1982)
    【36】 D. Halliday, R. Resnick and J. Walker, 呂正中,周榮芳,莫定山-譯,普通物理學(精華版),歐亞書局有限公司,新北市 (2011)
    【37】 S. C. Chang, J. S. Tsay and Y. D. Yao, Appl. Surf. Sci., 405, 316-320 (2017)
    【38】 管理者:張立信 / 林以淳,化學分析電子能譜儀,貴重儀器中心,國立中興大學,http://research.nchu.edu.tw/unit-news-detail/id/63/unit/9/mid/83#esca
    【39】 R. Shankar, Principles of quantum mechanics, Springer Science & Business Media, New York (2012)
    【40】 張立信,表面化學分析技術,奈米通訊19卷.4,17-23,國家奈米元件實驗室,新竹市 (2012)
    【41】 G. Ertl and J. Küppers, Low energy electrons and surface chemistry, VCH., Weinheim (1985)
    【42】 M. Aliofkhazraei, N. Ali, W. I. Milne, C. S. Ozkan, S. Mitura and J. L. Gervasoni Eds., Graphene Science Handbook, Six-Volume Set, p.369, CRC press, New York (2016)
    【43】 蘇青森,真空技術精華,47,五南書局出版公司,臺北市 (2009)
    【44】 陳建人,真空技術與應用,行政院國家科學委員會精密儀器發展中心,新竹市 (1994)
    【45】 E. Ruska, G. Binnig and H. Rohrer, The Nobel Prize in Physics 1986, Nobel Foundation (1986)
    【46】 F. J. Giessibl, Advances in atomic force microscopy, Rev. Mod. Phys. 75, 949 (2003)
    【47】 G. J. Leggett, J. C. Vickerman and I. S. Gilmore, Surface Analysis -- The Principal Techniques, 1st Ed., Chapter 9, John Wiley & Sons Inc., Chichester (1997)
    【48】 G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett., 56(9), 930 (1986)
    【49】 Z. Q. Qiu and S. D. Bader, Rev. Sci. Instrum., 71, 1243 (2000)
    【50】 Z. Q. Qiu, J. Pearson and S. D. Bader, Phys. Rev. B, 45, 7211 (1992)
    【51】 D. R. Lide, CRC Handbook of Chemistry and Physics, 72nd Ed., 10, England (1991)
    【52】 A. Geiler, H. Marvin, M. Zartarian, P. Head, A. Brandow and R. Loura, Magneto-Optical Kerr Effect Microscope, Northeastern University, Boston (2006)
    【53】 D. Jiles, Introduction to magnetism and magnetic materials, p.171-172, CRC press, New Delhi (2015)
    【54】 O. Životský, K. Postava, L. Kraus, K. Hrabovská, A. Hendrych and J. Pištora, J. Magn. Magn. Mater., 322(9-12), 1523-1526 (2010)

    下載圖示
    QR CODE