簡易檢索 / 詳目顯示

研究生: 黃昭諺
Chao-Yen Huang
論文名稱: 間時滑動模式之可微分小腦模型控制器設計
The Design of Discrete-Time Sliding Mode Using Differentiable Cerebellar Model Articulation Controller
指導教授: 洪欽銘
Hong, Chin-Ming
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 120
中文關鍵詞: 連續型滑動模式控制間時型滑動模式控制可微分小腦模型控制器
英文關鍵詞: Continuous-Time Sliding Mode Control, Discrete-Time Sliding Mode Control, Differentiable Cerebellar Model Articulation Controller
論文種類: 學術論文
相關次數: 點閱:104下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統滑動模式控制理論是以連續時間型態進行控制律之設計,其對於系統未確定部份、參數變動及外部干擾等具有良好的強健性與不敏性。但假若直接將連續型滑動模式設計結果以數位電腦實現並應用於間時系統之控制中,則往往會有控制效能無法達到設計者要求,甚至造成系統不穩定之情形發生。為了改善此項缺點,於是便衍生出間時滑動模式控制器(DSMC)設計方法。然而在實際進行間時滑動模式控制律設計時,須考慮之限制條件較連續型多,故常有設計過程複雜以及不易獲得適當控制律的問題出現。
    因此,本論文提出間時滑動模式之可微分小腦模型控制器來克服上述缺點。以可微分小腦模型控制器(DCMAC)輔助原間時滑動模式控制器之控制架構,利用可微分小腦模型控制器優異之非線性函數學習及樣本類化能力,即時補償間時滑動模式控制器因設計上之限制而使控制效能不彰之缺點,並縮短設計間時滑動模式控制器時所需之公式化推導時間,以達成簡化其設計程序及降低設計難度之目標。由模擬結果證實,在最簡單之間時滑動模式控制器設計方式下,本控制器可明顯改善原間時滑動模式控制器所無法克服之穩態誤差,並有效提昇系統之控制精確度。
    最後,將本論文所提之控制器架構應用於球-桿平衡控制問題中,以驗證其於實際控制問題中之可行性與控制性能。

    The control law derived by traditional sliding mode control is based on a continuous-time system, which is well known to be robust to the uncertainties of the system and insensitive to parameter variations and to external disturbances. However, if the control law designed on the basis of a continuous sliding mode is directly implemented for discrete-time systems using a digital computer, the performance of control is often unsatisfying on the prescribed specifications, even systems may become unstable. The discrete-time sliding mode controller (DSMC) was derived to improve these problems; however, the suitable control laws are difficult to obtain due to the rigorous limited conditions in the design of DSMC.
    Therefore, this thesis presents a novel design of discrete-time sliding mode using differentiable cerebellar model articulation controller (DCMAC) so that the above drawbacks can be overcome. Where DCMAC is used to real-time assist the original DSMC. Taking advantage of the excellent capability of DCMAC in nonlinear function learning and patterns generalization promotes the control performance and simplifies the formular deriving process in original DSMC. Compared with the conventional DSMC, this new control design provides a more simple method to design the control law of DSMC and reduces its difficulty of design. According to simulated results, this controller can significantly reduce the tracking error, and effectively elevate the accuracy in control process.
    Finally one experiment for Ball-Beam Balancing System using proposed controller has performed to demonstrate the feasibility and the control performance in practical control application.

    中文摘要 ……………………………………………………………………I 英文摘要 ……………………………………………………………………II 總目錄 ………………………………………………………………………III 圖目錄 ………………………………………………………………………VII 表目錄 ………………………………………………………………………IX 第一章 緒論…………………………………………………………………1 1.1 研究背景與動機………………………………………………………1 1.2 研究目的………………………………………………………………3 1.3 研究範圍與限制………………………………………………………4 1.4 研究方法………………………………………………………………4 1.5 研究步驟………………………………………………………………5 第二章 小腦模型控制器理論………………………………………………7 2.1 小腦模型控制器之理論背景…………………………………………7 2.2 傳統小腦模型控制器…………………………………………………8 2.2.1 傳統小腦模型控制器之基本架構 ………………………………8 2.2.2 傳統小腦模型控制器之記憶體映射方式 ………………………10 2.2.3 傳統小腦模型控制器之回想與學習演算法 ……………………12 2.2.4 傳統小腦模型控制器之使用程序 ………………………………13 2.3 可微分小腦模型控制器………………………………………………15 2.3.1 可微分小腦模型控制器之基本架構 ……………………………16 2.3.2 可微分小腦模型控制器之回想與學習演算 法…………………18 2.3.3 可微分小腦模型控制器之使用程序 ……………………………21 2.4 傳統CMAC與DCMAC之學習能力之比較 ………………………………22 2.5 傳統CMAC與DCMAC之學習控制能力之比較 …………………………24 第三章 滑動模式控制理論…………………………………………………32 3.1 滑動模式控制之理論背景……………………………………………32 3.2 連續型滑動模式控制…………………………………………………36 3.2.1 等價控制律之設計 ………………………………………………37 3.2.2 到達模式控制律之設計 …………………………………………38 3.2.3 顫動現象之探討 …………………………………………………40 3.3 間時型滑動模式控制…………………………………………………41 3.3.1 系統描述 …………………………………………………………43 3.3.2 等價控制律之設計 ………………………………………………43 3.3.3 到達模式控制律之設計 …………………………………………45 3.4 連續型與間時型滑動模式控制之數位模擬…………………………50 3.4.1 連續型滑動模式控制之模擬與分析 ……………………………50 3.4.2 間時型滑動模式控制之模擬與分析 ……………………………53 第四章 間時滑動模式之可微分小腦模型控制器設計……………………56 4.1 控制器之架構…………………………………………………………56 4.2 間時滑動模式控制器設計……………………………………………58 4.2.1 等價控制律設計 …………………………………………………58 4.2.2 到達模式控制律設計 ……………………………………………60 4.2.3 指數型到達模式特性探討 ………………………………………64 4.3 可微分小腦模型控制器設計…………………………………………66 4.3.1 控制器參數設定 …………………………………………………66 4.3.2 控制器動作說明 …………………………………………………68 4.3.3 控制器之回想演算法 ……………………………………………69 4.3.4 控制器之學習演算法 ……………………………………………69 4.3.5學習發散之抑制策略………………………………………………71 第五章 球-桿平衡系統之控制模擬與實驗 ………………………………72 5.1 系統硬體規劃…………………………………………………………72 5.2 系統配備之功能說明…………………………………………………74 5.2.1 球-桿平衡受控機構………………………………………………74 5.2.2 致動器模組 ………………………………………………………75 5.2.3 I/O介面卡 ………………………………………………………76 5.3 受控機構之數學模型…………………………………………………76 5.3.1 受控系統之非線性狀態方程 ……………………………………76 5.3.2 受控系統非線性狀態方程之線性化 ……………………………78 5.4 系統控制模擬…………………………………………………………82 5.4.1 間時型滑動模式控制器模擬 ……………………………………83 5.4.2 間時滑動模式之可微分小腦模型控制器模擬 …………………87 5.5 控制實驗之設計………………………………………………………90 5.6 實驗結果………………………………………………………………94 第六章 研究結論與建議……………………………………………………105 參考文獻 ……………………………………………………………………107 作者簡介 ……………………………………………………………………111

    [1] S. V. Emel’yanov, “Variable Structure Systems,” Moscow:Nauka (in Russian), 1967.
    [2] Y. Itkis, “Control Systems of Variable Structure,” New York: Wiley, 1976.
    [3] V. A. Utkin, “Sliding Modes and Their Application in Variable Structure Systems,” Moscow: Nauka (in Russian) (also Moscow: Mir, 1978, in English).
    [4] F. C. Sun, Z. Q. Zhang, “Neural adaptive tracking controller for robot manipulators with unknown dynamics,” IEE Proc. Control Theory and Applications, vol. 147, no. 3, 2000, pp.366-370.
    [5] K. S. Hwang, C. S. Lin, “Smooth trajectory tracking of three-link robot: a self-organizing CMAC approach,” IEE Trans. Systems, Man and Cybernetics, vol. 28, no. 5, 1998, pp.680-692.
    [6] K. Y. Lian, C. R. Lin, “Sliding-mode motion/force control of constrained robots,” IEEE Trans. Automatic Control, vol. 43, no. 8, 1998, pp.1101-1103.
    [7] Y. Zhang, J. Changxi, V. I. Utkin, “Sensorless sliding-mode control of induction motors,” IEEE Trans. Industrial Electronics, vol. 47, no. 6, 2000, pp.1286-1297.
    [8] M. Guerreiro, F. Silva, “Rotor position control for induction machines using diametrical inversion of stator voltage,” IEE Proc. Electric Power Applications, vol. 147, no. 2, 2000, pp.99-106.
    [9] K. K. Shyu, “Optimal position control of synchronous reluctance motor via totally invariant variable structure control,” IEE Proc. Control Theory and Applications, vol. 147, no. 1, 2000, pp.28-36.
    [10] K. Jezernik, “VSS control of unity power factor,” IEEE Trans. Industrial Electronics, vol. 46, no.2, 1999, pp.325-332.
    [11] S. J. Chiang, T.L Tai, T.S. Lee, “Variable structure control of UPS inverters,” IEE Proc. Electric Power Application, vol. 145, 1998, pp.559-567.
    [12] P. F. Donoso-Garcia, P.C. Cortizo, B.R. de Menezes, M.A. Severo Mendes, “Sliding-mode control for current distribution in parallel-connected DC-DC converters,” IEE Proc. Electric Power Applications, vol. 145, 1998, pp.333-338.
    [13] S. N. Singh, M. Steinberg, R. D. DiGirolamo, “Variable structure robust flight control system for the F-14,” IEEE Trans. Aerospace and Electronic System, vol. 33, no. 1, 1997, pp.77-84.
    [14] S.N. Singh, “Asymptotically decoupled discontinuous control of systems and nonlinear aircraft maneuver,” IEEE Trans. Aerospace and Electronic System, vol. 25, no. 3, 1989, pp.380-391.
    [15] K. Furuta, “Sliding Mode Control of A Discrete System,” Systems & Control Letters, vol. 14, 1990, pp.145-152.
    [16] Y. Dote and R. G. Hoft, “Microprocessor based Sliding Mode Controller for DC Motor Drivers,” Ind. Application Soc. Annu. Metting Cincinnati, OH, 1980.
    [17] S. Z. Sarpturk, Y. Istefanopulos, and O. Kaynak, “On the Stability of Discrete-Time Sliding Mode Control Systems,” IEEE Trans. Automat. Contr., vol. 32, no, 10, 1987, pp.930-932.

    [18] C. Y. Chan, “Servo-systems with discrete-variable structure control,” Systems & Control Letters, vol. 17, 1991, pp.321-325.
    [19] S. R. Hebertt, “Non-linear discrete variable structure systems in quasi-sliding mode,” Int. J. Control, vol. 54, no. 5, 1991, pp.1171-1187.
    [20] M. L. Corradini, G. Orlando, “A discrete adaptive variable-structure controller for MIMO systems, and its application to an underwater ROV,” IEEE Trans. Control Systems Technology, vol. 5, no. 3, 1997, pp. 349-359.
    [21] T. L. Chern, “Discrete integral variable structure model following control for induction motor drivers,” IEE Proc. Electric Power Applications, vol. 143, no. 6, 1996, pp.467-474.
    [22] C. T. Pan, T. Y. Chang, C. M. Hong, “A fixed structure discrete-time sliding mode controller for induction motor drives,” IEEE Trans. Energy Conversion, vol. 9, no. 4, 1994, pp.645-651.
    [23] W. Thomas Miller, Filson H. Glanz and L. Gordon Kraft, “CMAC: An Associative Neural Network Alternative to Backpropagation,” Proceeding of the IEEE, Vol.78, No.10, 1990, pp.1561-1567.
    [24] K. S. Hwang, C. S. Lin, “Smooth trajectory tracking of three-link robot: a self-organizing,” IEEE Trans. Systems, Man and Cybernetics, vol. 285, 1998, pp.680-692.
    [25] D. A. Handelman, S. H. Lane, “Integrating neural networks and knowledge-based systems for intelligent robotic control,” IEEE Control Systems Magazine, vol. 103, 1990, pp.77-87.
    [26] K. Y. Young, S. J. Shiah, “An approach to enlarge learning space coverage for robot learning control,” IEEE Trans. Fuzzy Systems, vol. 54, no. 4, 1997, pp.511-522.
    [27] J. J. Hu, G. Pratt, “Self-organizing CMAC Neural Networks and Adaptive Dynamic Control,” IEEE International Symposium on Control/Intelligent Systems and Semiotics 1999, Cambridge, MA., 1999, pp.259-265.
    [28] W. T. Miller, A. L. Kun, “Unified walking control for a biped robot using neural networks,” IEEE International Symposium on Intelligent Systems and Semiotics (ISAS) 1998, pp.283 -288.
    [29] A. L. Kun, W. T. Miller, “Adaptive dynamic balance of a biped robot using neural networks,” IEEE International Conference on Robotics and Automation 1996, vol. 1, pp.240-245.
    [30] C. T. Chiang and C. S. Lin, “CMAC with General Basis Functions,” Neural Network, vol.9, no.7, 1996, pp.1199-1211.
    [31] W. T. Miller, R. H. Hewes, F. H. Glanz, and L. G. Kraft, “Real-time dynamic control of an industrial manipulator using a neural-network-based learning controller,” IEEE Trans. Robot Automation, vol. 6, no. 1, 1990, pp.1-9.
    [32] J. S. Albus, “A New Approach to Manipulator Control: The Cerebellar model articulation controller (CMAC),” J. Dynamic Syst., Meas., Contr., Trans. ASME, Series G, Vol.97, No.3, 1975, pp.220-227.
    [33] C. S. Lin, C. T. Chiang, “Learning Convergence of CMAC Technique,” IEEE Trans. Neural Networks, Vol.8, No.6, 1997, pp.1281-1292.
    [34] D. E. Thompson and S. Kwon, “Neighborhood Sequential and Random Training Techniques for CMAC,” IEEE Trans. Neural Networks, Vol.6, No.1, 1995, pp.196-202.

    [35] F. Gonzalez-Serrano, A. Figueiras-Vidal and A. Artes-Rodriguez, “Generalizing CMAC Architecture and Training,” IEEE Trans. Neural Networks, Vol.9, No.6, 1998, pp.1509-1514.
    [36] S. H. Lane, D. A. Handelman, J. J. Gelfand, “Theory and Development of Higher-Order CMAC Neural Networks,” IEEE Contr. Syst., vol. 12, 1992, pp. 23-30.
    [37] C. T. Chiang and C. S. Lin, “Integration of CMAC and Radial Basis Function Techniques,” IEEE International Conference on Intelligent Systems for the 21st, Vol. 4, 1995, pp.3263-3268.
    [38] C. S. Lin and C. K. Li, “A Sum-of-Product Neural Network (SOPNN),” Neurocomputing, Vol.30, 2000, pp.273-291.
    [39] W. T. Miller, “Real-Time Neural Network Control of A Biped Walking Robot,” IEEE Control Systems Magazine, Vol.141, 1994, pp.41-48.
    [40] F. C. Chen and C. H. Chang, “Practical Stability Issues in CMAC Neural Network Control Systems,” IEEE Trans. Control Syst. Technol., Vol.4, No.1, 1996, pp.86-91.
    [41] J. S. Ker, Y. H. Kuo, R. C. Wen and B. D. Liu, “Hardware Implementation of CMAC Neural Network with Reduced Storage Requirement,” IEEE Trans. Neural Network, Vol.8, No.6, 1997, pp.1545-1556.
    [42] Y. Iiguni, “Hierarchical Image Coding via Cerebellar Model Arithmetic Computers,” IEEE Trans. Image Processing, 1996, Vol.5, No.10.
    [43] J. S. Albus, “Data Storage in the Cerebellar Model Articulation Controller (CMAC),” J. Dynamic Syst., Meas., Contr., Trans. ASME, Series G, Vol.97, No.3, 1975, pp.228-233.
    [44] S. V. Emel'yanov, “Use of Nonlinear Correcting Devices of Switch Type to Improve the Quality of Second-Order Automatic Control Systems,” Automat. I Telemekh., Vol. 20, No. 7, 1959.
    [45] W. B. Gao, “The Foundation of Variable Structure Theory”, Beijing: CST, 1988, pp.243.
    [46] G. Golo, Č. Milosavljević, “Robust Discrete-Time Chattering Free Sliding Mode Control,” Sys. & Contr. Letters, Vol. 41, 2000, pp.19-28.
    [47] Bartolini, G., Ferrara, A., Usai, E., Utkin, V. I., “On Multi-Input Chattering-Free Second-Order Sliding Mode Control,” IEEE Trans. Automat. Contr., Vol. 45, 2000, pp.1711-1717.
    [48] Zhang, D. Q., Panda, S. K., “Chattering-Free and Fast-Response Sliding Mode Controller,” IEE Proc. Contr. Theory and Appl., Vol. 146, 1999, pp.171-177.
    [49] Kachroo, P., “Existence of Solutions to A Class of Nonlinear Convergent Chattering-Free Sliding Mode Control Systems,” IEEE Trans. Autom. Contr., Vol. 44, 1999, pp.1620-1624.
    [50] D. Milosavljevic, “General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems,” Automat. Remote Contr., vol. 46, 1985, pp.307-314.

    QR CODE