研究生: |
林世洪 Lin, Shih-Hong |
---|---|
論文名稱: |
摺紙藝術教學方式與學習認同關係之探討 A Probe into the Relationship between Teaching Method and Learning Identity of Origami Art |
指導教授: |
董澤平
Dong, Tse-Ping |
學位類別: |
碩士 Master |
系所名稱: |
美術學系 Department of Fine Arts |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 113 |
中文關鍵詞: | 摺紙藝術 、推廣教學方式 、學習認同 |
英文關鍵詞: | origami art, promotion of teaching methods, learning and recognition |
DOI URL: | https://doi.org/10.6345/NTNU202202460 |
論文種類: | 學術論文 |
相關次數: | 點閱:132 下載:24 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摺紙藝術流傳已相當久遠,一直以來都很受各階層歡迎,但其發展卻始終處於獨立創作層級,並未見到有系統的研究及推廣,無法彰顯摺紙藝術深一層的價值。摺紙藝術原本已經具有益智、怡情、環保等多項優點,如果再將創意元素導入製作的過程,將使得摺紙藝術進一步推升到創意摺紙藝術境界,將會成為一項值得大力推廣的手工藝術。在各種實際推廣活動中經常發現摺紙藝術的「美」與「奇」確實都能激起短暫的熱情,但這股熱情卻又往往隨著活動結束而很快的消失無蹤,導致推廣工作無法延續,相當可惜。國內外從事摺紙藝術創作者通常會遵守「單紙摺疊,不剪不接」基本原則進行創作,此一共識主要在於維護摺紙藝術之核心價值,因此,各種突破限制的技法就成為摺紙藝術創作者投注最多心力的地方,自然也是創作成功與否的關鍵。如果能將研發的技法加以整合包裝,組合成推廣教學適用的教材,相信對於推廣會有相當高的效益。由於目前大部分創作者並不是以研究分析角度切入,所以目前與摺紙藝術相關的論文的質與量均不多,研究內容主要有二方向,一為針對摺紙藝術所採用之技法進行探索的研究論文,包括剖析摺疊過程之幾何概念及各種技法之運用;另一為運用基礎摺紙技法作為中小學數學課程輔助教學之工具,研究結果都相當正面,但從文獻中卻很少看到針對推廣教學方法及學習認同相關之研究。因此,本論文研究主要將著眼於探討目前最常用的三種推廣教學方式與學習認同間之關係,藉此了解學習者對於三種教學方式的接受程度,同時蒐集改善意見,作為後續擬定推廣教學計畫之參考。研究結果顯示具有摺紙技巧基礎的受測者對於摺紙原則也較能認同,性別的影響不大,受測者對三種教學方式的認同度依序為示範教學、看影片自學及看書自學。普遍認為最佳的教學活動人數為6-10人,作品之步驟數是11-15步,學習時間則以11-15分鐘最佳。因應學習者之建議,除示範教學方式維持原樣外,未來將綜合書籍及影片之優點,將教材轉製成電子書,相信對於推廣教學活動的進行會有相當大的正面助益。
Origami art has long history and popular among all social classes, but the development has always stayed at the level of independent creation did not enter the level of systematic research and promotion. As result the core art value of origami could not be demonstrated and public to general. Origami art has been seen as one kind of puzzle, pleasure, raising environment friendly images and many other positive impressions. If adding creative elements into origami producing process, it will turn origami art into innovative and highly popular handmade art. In fact, in the various promotional activities often found that origami art’s “beauty” and “extraordinary” really can inspire short-term enthusiasm among publics. Unfortunately, the interests on origami usually fade out quickly together with the end of promotion events, causing the promotion work cannot be continued. Both overseas and domestic origami artists usually follow the basic principles “single sheet folding no cutting and taping” to maintain the core value of origami art. Therefore, different limit breaking techniques become the area where origami artist put most effort to study, and also is the key to reach success art creation or not. If the origami R & D techniques can be integrated and combined with current teaching materials, it will bring many advantages to promotion efficiency. However, currently most of the creators do not focus on research and analyze origami, thus there are not many good quality and quantity origami art related papers. These researches is mainly in two directions, the first one is exploring on the techniques used in origami art which include the analysis on the geometric concept during folding process, and the various usage of techniques. The second aspect is focus on implement basic origami techniques into mathematic course teaching material of primary and secondary school and found considerably positive result. However, it is rare to see related researches on origami promotion through teaching methods and learning recognition. Therefore, the research of this thesis will mainly focus on the relationship between the three methods that are most common used as popularization teaching and learning recognition, as to understand the level of acceptance of the three teaching methods and collect the suggestions for improvement as the follow up teaching plan. The result shows that the subjects with the basis of the origami technique are more agreeable to the origami principle, no difference between genders. Regarding the level of acceptance on the three teaching methods, the demonstration teaching method is the most popular among the learners; the followings are self-learning through videos and self-learning through books. In general, the most suitable teaching activity should have the following criteria: 6 to 10 participants, perform 11 to 15 steps, complete in 11 to 15 minutes. Based on the suggestions from subjects, demonstrate teaching method keep as original but by adding the elements from videos and books to transform into e-learning materials, it is possible to bring significant advantages to promotion activities on origami art.
王或華(1992a),遊戲摺紙,台北市:美勞教育出版有限公司。
王或華(1992b),摺紙動物園,台北市:美勞教育出版有限公司。
王或華(1993),巧手摺禮盒,台北市:美勞教育出版公司。
王或華(1995),遊戲摺紙,台北市:美勞教育出版公司。
王淑芬(2008),教學生做趣味紙工,台北縣:作家出版社。
江金石譯(1981),世界折紙遊戲(原作者:高濱利惠),台南市:大坤書局。
李弘善譯(2012a),設計摺學(原作者:PaulJackson),台北市:積木文化。
李弘善譯(2012b),設計摺學2(原作者:PaulJackson),台北市:積木文化。
朱玟蓉(2013),探討電子書對國小學童進行摺紙活動之學習成效(未出版之碩士論文),國立臺中教育大學,臺中市。
卓志賢(2003),紙飛機工廠,台北市:聯經出版事業股份有限公司。
周顯宗(2005),周顯宗的摺紙教室,台北市:尖端出版股份有限公司。
周顯宗(2010),摺紙寶典1,台北市:青文出版社股份有限公司。
周顯宗(2010),摺紙寶典3,台北市:青文出版社股份有限公司。
周顯宗(2010),摺紙寶典4,台北市:青文出版社股份有限公司。
林世洪(2006),林世洪的創意摺紙世界1,台北市。
林世洪(2008),林世洪的創意摺紙世界2,台北市。
林世洪(2011a),多突出摺紙技法在摺紙藝術創新設計應用之探討。南亞學報,31,531-546。
林世洪(2011b),多突出摺紙技法之剖析研究。2011年健康休閒產業科技與管理國際學術研討會論文集,177-178。
林世洪(2011c),均衡式摺紙技法之創建。藝創設計101學術研討會[論文集及作品集],105-111。
林世洪(2012),螺旋式摺法在摺紙藝術創作上之應用。2012創意與創新設計學術研討會論文集及作品集,169-175。
林世洪(2013),代表性摺紙藝術作品數位資料庫之建立。2013設計與創意加值學術研討會論文集及作品集,157-166。
林世洪(2014),林世洪的創意摺紙世界3,台北市。
林世洪(2015a),林世洪的創意摺紙世界4,台北市。
林世洪(2015b),平行摺法在摺紙藝術創作之應用。2015視覺設計與美學管理學術研討會論文集,198-204。
林世洪(2015c),六突出摺紙藝術基本型之幾何關係探討。第六屆設計創新暨應用學術研討會,台南應用科技大學。
林鼎文(2012),多媒體動畫融入摺紙教學之學習成效研究(未出版之碩士論文),國立臺中教育大學,臺中市。
神谷哲史(2015),創作アイデアの玉手箱神谷流創作摺紙挑戰,東京,ソツム株式會社。
翁參隆(1985),紙裝飾,新北縣。
洪正龍(2007),科學遊戲對國小五年級不同學習動機類型學童的學習動機之影響研究(未出版之碩士論文),國立新竹教育大學,新竹市。
洪新富(2003),台灣民俗紙藝,台中市:晨星出版有限公司。
洪萬生(2011),摺摺稱奇:初登大雅之堂的摺紙數學,台北市,三民書局股份有限公司。
張秀慧譯(2011),一張色紙DIY摺出機器人(原作者:フチモト ムネジ),台北市:東販。
張皓(2014),國中實施自行車教育之學習動機、滿意度與成效之研究(未出版之碩士論文),國立臺灣師範大學,臺北市。
郭大廣(2014),國中學生數學學習動機、數學能力及對數學補習的看法之研究(未出版之碩士論文),國立東華大學,花蓮縣。
陳宥良(2009),探討國中三年級學生透過摺紙活動進行尺規作圖補救教學之成效(未出版之碩士論文),國立臺灣師範大學,臺北市。
陳聖別(2012),摺紙活動對尺規作圖學習之效益研究-以八年級學生補救教學為例(未出版之碩士論文),國立臺灣師範大學,臺北市。
陳慧英(2012),摺紙創意教學對國小學童圖形創造力發展之影響(未出版之碩士論文),國立臺灣師範大學,臺北市。
윤비아、전유창、김성욱(2015). An optimal control of origami pattern using digital algorithm. Journal of the korean Institute of Culture Architecture, 50, 150-157.
Demaine, E. D. & Demaine, M. L. & Hart, V. & Price, G. N. & Tachi, T.(2011). (Non)Existence of Pleated Folds: How Paper Folds Between Creases. Graphs and Combinatorics 27:377–397.
Geun, G. Y. (2010). Analysis of Problem Posing Strategy of Mathematics Gifted Students in an Origami Program. Journal of Gifted/Talented Education, 20-2, 461-486.
Mitani, J.(2009). A Design Method for 3D Origami Based on Rotational Sweep. Computer-Aided Design and Applications, 69-79.
Haton, K.(2011). History of Origami in the East and The West before Interfusion, Fifth International Origami in Design and Art Meeting of Origami Science, Mathematics and Education, Part 1, 3-12.
Lommel, A.(2009). Paper Nautli:A Model for Three-Dimensional Planispiral Growth, Fourth International Origami in Design and Art Meeting of Origami Science, Mathematics and Education, Part 1, 3-8.
Sternberg S.(2009) Curves and Flats, Fourth International Origami in Design and Art Meeting of Origami Science, Mathematics and Education, Part 1, 9-20.
Tachi, T.(2009) Simulation of Rigid Origami, Fourth International Origami in Design and Art Meeting of Origami Science, Mathematics and Education, Part 3, 175-188.
Tenbrink, T. & Taylor, H. A. (2015). Conceptual transformation and cognitive processes in origami paper folding. Journal of Problem Solving, 8, 2-22. doi:10.7771/1932-6246.1154.
Wares, A. (2011). Appreciation of mathematics through origami. International Journal of Mathematical Education in Science and Technology, 277-283. doi:10.1080/0020739X.2012.678902.