簡易檢索 / 詳目顯示

研究生: 高健騰
Kao, Chien-Teng
論文名稱: 影響臺灣精準醫療產業創新應用之關鍵因素
Key factors affecting innovative applications in Taiwan's precision medical industry
指導教授: 蘇友珊
Su, Yu-Shan
口試委員: 吳豐祥 賴奎魁 耿筠 蘇友珊
口試日期: 2021/08/03
學位類別: 碩士
Master
系所名稱: 工業教育學系科技應用管理碩士在職專班
Department of Industrial Education_Continuing Education Master's Program of Technological Management
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 168
中文關鍵詞: 精準醫療多層次分析法關鍵因素
英文關鍵詞: Precision medicine, Hierarchical Decision Modeling, key factors
研究方法: 多層次分析法
DOI URL: http://doi.org/10.6345/NTNU202101720
論文種類: 學術論文
相關次數: 點閱:268下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 精準醫療的發展不僅是醫療產業的趨勢也是我國目前產業發展的重點,在基因定序已完成的今天,世界各先進國家無不以搶佔其市場或進行相關發展為目標,而面對各國的競爭挑戰,臺灣需明白自己的優勢與定位才能在此一浪潮中脫穎而出。
    本研究採用多層次分析法 (Hierarchical Decision Modeling,HDM) ,並配合大量國內外文獻及報章雜誌進行整理,彙整出影響臺灣精準醫療產業創新應用關鍵因素的構面與準則,並以臺灣精準醫療領域專家作為本次研究對象,統整分析各構面與準則間的權重與一致性,作為產業及政府部門進行相關決策時的參考依據。
    由研究發現,政策法規被專家認為是影響精準醫療產業創新應用中最重要的構面,佔整體任務的24%,緊隨其後的構面是產業發展及技術發展,皆佔整體任務的20%,其餘二個構面的排名較相似,分別為市場發展的19%、及核心資源的18%。

    The development of precision medicine is not only a trend in the medical industry, but also the focus of my country’s current industrial development. Today, when gene sequencing has been completed, all advanced countries in the world aim to seize their market or carry out related development, and face competition from various countries and Challenges, Taiwan needs to understand its own advantages and positioning to stand out in this wave.
    This research will adopt the Hierarchical Decision Modeling (HDM) method, cooperate with the collection of many domestic and foreign literatures and summarize the perspective and criteria of the key factors affecting the innovative application of Taiwan's precision medicine industry.
    This research takes experts and scholars in Taiwan's precision medicine industry as the research object. After analyzing the weights and consistency between the various perspective and criteria, it serves as a reference for the relevant decision-making of the industry and government departments.
    According to research findings, policies and regulations are considered by experts as the most important aspect in the innovation and application of the precision medicine industry, accounting for 24% of the overall task, followed by industrial development and technological development, both accounting for 20% of the overall task , The rankings of the remaining two perspective are relatively similar, with 19% of market development and 18% of core resources respectively.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 5 第三節 研究流程 5 第二章 文獻探討 9 第一節 創新系統理論 9 第二節 精準醫療產業與技術發展 14 第三節 精準醫療政策與法規 42 第四節 精準醫療市場發展與核心資源 64 第五節 影響臺灣精準醫療產業創新應用關鍵因素構面與準則 77 第三章 研究方法 99 第一節 研究對象 99 第二節 問卷內容設計 101 第三節 多層次決策分析法 102 第四章 資料結果分析 109 第一節 構面之量化分析 109 第二節 準則之量化分析 111 第五章 研究發現與結論 127 第一節 主要研究發現 127 第二節 研究貢獻 129 第三節 研究限制 132 第四節 未來研究方向 133 第五節 研究結論 135 參考文獻 139 附錄 專家問卷 153

    壹、中文部分
    王定愷(2020)。數位科技促使走向精準醫療 床位多寡不再重要。工商時報。取自https://ctee.com.tw/industrynews/biomed/294406.html

    文讓均(2017)。臺灣搶攻精準醫療 得先搞定四大挑戰!。遠見。取自https://www.gvm.com.tw/article/39811

    生醫產業創新推動方案(2017年4月17日)

    生技新藥產業發展條例之推動成效與修法內容【會議紀錄】,2020年11月30日

    巫芝岳(2020)。楊泮池:培育跨域人才 瞄準醫未病的「精準健康」。環球生計月刊。取自https://www.gbimonthly.com/2020/08/78505/

    李英雄(2019)。4月專欄:精準醫學十年磨劍。臺灣精準醫學協會。取自 http://www.tpms.org.tw/4%E6%9C%88%E5%B0%88%E6%AC%84%E7%B2%BE%E6%BA%96%E9%86%AB%E5%AD%B8%E5%8D%81%E5%B9%B4%E7%A3%A8%E5%8A%8D/

    杜憶萍(2018)。何為液態切片檢驗? 。普生。取自https://www.gbc.com.tw/2018/10/%e4%bd%95%e7%82%ba%e6%b6%b2%e6%85%8b%e5%88%87%e7%89%87%e6%aa%a2%e9%a9%97/?lang=zh-hant

    林治華、李鍾熙、陳華鍵(2017)。描繪未來願景 奠定臺灣利基。精準醫療產業發展論壇。取自https://twbiogroup.org/Interview.aspx?pn=27

    吳佳翰(2018)。發展精準醫療的三大挑戰。勤業眾信。取自https://www2.deloitte.com/tw/tc/pages/life-sciences-and-healthcare/articles/precision-medicine.html

    東灘顧問(2017)。精準醫療:重新定義健康醫療服務產業。每日頭條。取自https://kknews.cc/zh-tw/science/gzbokz9.html

    科技部再生醫學科技發展計畫(2017年1月1日)

    思宇研習社(2017)。行研—精準醫療行業研究分析報告。每日頭條。取自https://kknews.cc/zh-tw/health/xr35r8o.html

    財團法人中技社(2019)。臺灣醫療產業智慧化與國際化之機會與挑戰。臺北市:財團法人中技社

    時生(2021)。基因治療市場爆發!2025年市場規模將超305.4 億美元。藥智網。取自http://big5.china.com.cn/gate/big5/finance.china.com.cn/industry/medicine/20210615/5593339.shtml

    基因慧研究院(2021)。2021基因行產業藍皮書。深圳市:基因慧

    郭鴻慧(2019)。《科技》10.64%複合成長,全球精準醫療市場規模2028年上看2167億美元。時報資訊。取自https://tw.stock.yahoo.com/news/科技-10-64-複合成長-全球精準醫療市場規模2028年上看2167億美元-023758178.html

    健康大數據永續平台計畫(2020年12月25日)

    許淑敏、蘇嘉瑞(2020)。精準醫療與分子檢測的新機會。經濟日報。取自https://money.udn.com/money/story/10161/4294194

    集邦科技(2018)。以 NGS 技術為基礎的伴隨式診斷,奠定 NGS 臨床法規監管明確化。科技新報。取自https://technews.tw/2018/09/17/ngs-regulation-progress/

    張雅雯(2019)。基因檢測、液態切片「算病」掀熱潮。好健康,49。取自https://www.twhealth.org.tw/journalView.php?cat=49&sid=821&page=1

    曾惠瑾(2020)。數位科技促使走向精準醫療 床位多寡不再重要。工商時報。取自https://ctee.com.tw/industrynews/biomed/294406.html

    葉席吟(2016)。精準醫療之各國推動政策觀察。科技政策觀點。取自https://portal.stpi.narl.org.tw/index/article/10278

    葉席吟(2017)。生醫界下一站,精準醫療!來看各國如何推動精準醫療政策。泛科技。取自https://panx.asia/archives/56831

    智觀智造(2020)。數位醫療。智觀智造。取自https://www3.makerwisdom.com/產業應用/數位醫療/

    資誠(2018)。精準醫療發展現況與趨勢全球篇。臺北市:資誠

    資誠(2018)。精準醫療發展現況與趨勢臺灣篇。臺北市:資誠

    勤業眾信(2019)。臺灣數位醫療法規發展。《2019 醫療照護產業展望》報告。取自http://everglow.com.tw/infoDetail.asp?id=1020

    楊泮池(2020)。中研院院士談數位醫療發展 楊泮池:精準健康 生醫新契機。經濟日報。取自https://udn.com/news/story/7241/5011193

    熊傳慧(2020)。封面故事 I 預防病毒 精準醫療打頭陣。世界新聞網。取自https://www.worldjournal.com/6859231/article-預防病毒-精準醫療打頭陣

    蔡秀娟(2016)。實現精準醫療提升生醫競爭力。工業技術與資訊月刊,291。取自https://www.itri.org.tw/ListStyle.aspx?DisplayStyle=18_content&SiteID=1&MmmID=1036452026061075714&MGID=707267550347762470

    維基百科(2020)。活體組織切片。取自 https://zh.wikipedia.org/wiki/活體組織切片

    維基百科(2020)。伴隨式診斷。取自https://zh.wikipedia.org/wiki/%E4%BC%B4%E9%9A%A8%E5%BC%8F%E8%A8%BA%E6%96%B7

    精準醫療國際法規趨勢與產業化策略規劃研討會【會議紀錄】,2017年11月24日

    閻雲(2021)。疫情後省思 深化醫界、資通訊界合作。聯合報。取自https://health.udn.com/health/story/7421/5301609

    臺灣精準健康方案(2021年5月31日)

    衛生福利資料加值應用研討會【會議紀錄】,2018年7月25日

    經濟部工業局(2020)。2020生技產業白皮書。臺北市:經濟部工業局

    嚴珮華(2019)。癌後新人生 我們與癌的和平共存之道。康健雜誌,245。取自https://www.commonhealth.com.tw/article/article.action?nid=79190&from=search

    譚中岳(2018)。全球精準醫療發展趨勢。農業生技產業季刊,56,8。

    顧建文(2016)。精準醫學的現狀和發展。每日頭條。取自https://kknews.cc/health/299eer.html

    GENE ONLINE(2020)。 2020亞洲生技大會(BIO Asia–Taiwan)亞洲生技論壇。取自https://geneonline.news/index.php/2020/07/29/companion-diagnostic-cell-and-gene-therapy/

    John Hung(2019)。走過半世紀的基因定序 從研究技術蛻變成為產業支柱。GENE ONLINE。取自https://geneonline.news/index.php/2019/07/16/half-a-century-of-gene-sequencing-from-research-technology-to-pillars-of-industry-2/


    貳、英文部分
    Arthur W.B. (1989). Competing technologies, increasing returns, and lock-in by historical events. Economic Journal, 99(394), 116-131.

    A.Q. Wang. (2005). The correlation analysis on technological, system and industrial innovation. Contemporary Economic Research, 8, 31-34.

    Ahmad Tarhini & Ragini R. Kudchadkar. (2018). Predictive and on-treatment monitoring biomarkers in advanced melanoma: Moving toward personalized medicine. Cancer Treatment Reviews, 71, 8-18.

    Anne Kerr Rosemary L.Hill & Christopher Till. (2020). The limits of responsible innovation: Exploring care, vulnerability and precision medicine. Technology in Society, 52, 24-31.

    Arash Shaban-Nejad, Martin Michalowski, Niels Peek, John S. Brownstein & David L. Buckeridge. (2020). Seven pillars of precision digital health and medicine. Artificial Intelligence in Medicine, 103, 101793.

    A.Ibrahim, S.Primakov, M.Beuque, H.C.Woodruff, I.Halilaj, G.Wu, T.Refaee, R.Granzier, Y.Widaatalla, R.Hustinx, F.M.Mottaghy & P.Lambin. (2021). Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework. Methods,188, 20-29.

    Cristiano Antonelli. (2006). Localized technological change and factor markets: constraints and inducements to innovation. Structural Change and Economic Dynamics, 17(2), 224-247.

    Christina Kraniotoua, Vasiliki Karadima, George Bellosa & George Th. Tsangaris. (2018). Predictive biomarkers for type 2 of diabetes mellitus: Bridging the gap between systems research and personalized medicine. Journal of Proteomics, 188, 59-62.

    Charanjit Sandhu, Alia Qureshi & Andrew Emili. (2018). Panomics for Precision Medicine. Trends in Molecular Medicine, 24(1), 85-101.

    Chang Songa, Ying Kongb, Lianfang Huang, Hui Luo & Xiao Zhu. (2020). Big data-driven precision medicine: Starting the custom-made era of iatrology. Biomedicine & Pharmacotherapy, 129, 110445.

    Claudia C. Y. Chung, Gordon K. C. Leung, Christopher C. Y. Mak, Jasmine L. F. Fung, Mianne Lee, Steven L. C. Pei, Mullin H. C. Yu, Vivian C. C. Hui, Joshua C. K. Chan, Jeffrey F. T. Chau, Marcus C. Y. Chan, Mandy H.Y. Tsang, Wilfred H. S. Wong, Joanna Y. L.Tung, Kin Shing Lun, Yiu Ki Ng, Cheuk Wing Fung, Mabel S. C. Wong… & Brian H. Y. Chung. (2020). Rapid whole-exome sequencing facilitates precision medicine in paediatric rare disease patients and reduces healthcare costs. The Lancet Regional Health - Western Pacific, 1, 100001.

    Dearbhaile C. Collins, Raghav Sundar, Joline S. J. Lim & Timothy A. Yap. (2017). Towards Precision Medicine in the Clinic: From Biomarker Discovery to Novel Therapeutics. Trends in Pharmacological Sciences, 38(1), 25-40.

    Davide Cirillo & Alfonso Valencia. (2019). Big data analytics for personalized medicine. Current Opinion in Biotechnology, 58, 161-167.

    Dana Connors, Jeff Allen, J. D. Alvarez, Jennifer Boyle, Massimo Cristofanilli, Carolyn Hiller, Susan Keating, Gary Kelloff, Lauren Leiman, Robert McCormack, Diana Merino, Emily Morgan, Klaus Pantel, Christian Rolfo, Maria Jose Serrano, A. Pia Sanzone, Thomas Schlange, Caroline Sigman, & Mark Stewart. (2020). International liquid biopsy standardization alliance white paper. Critical Reviews in Oncology/Hematology, 156, 103112.

    Damien Gruson, Sergio Bernardini, Pradeep Kumar Dablad, Bernard Gouget & Sanja Stankovic. (2020). Collaborative AI and Laboratory Medicine integration in precision cardiovascular medicine. Clinica Chimica Acta, 509, 67-71.

    Diane C. Lim, Diego R. Mazzotti, Kate Sutherland, Jesse W. Mindel, Jinyoun Kim, Peter A. Cistulli, Ulysses J. Magalang, Allan I. Pack, Philipde Chazal & Thomas Penzel. (2020). Reinventing polysomnography in the age of precision medicine. Sleep Medicine Reviews, 52, 101313.

    Ellen H.M. Moors, PiretKukk Fischer, Wouter P.C. Boon, Frank Schellen & Simona O. Negroa. (2018). Institutionalisation of markets: The case of personalised cancer medicine in the Netherlands. Technological Forecasting and Social Change, 128, 133-143.

    Elizabeth Gibson, Tugrul U. Daim & Marina Dabic. (2019). Evaluating university industry collaborative research centers. Technological Forecasting and Social Change, 146, 181-202.

    Eric Faulkner MPH, Anke-Peggy Holtorf PhD, Surrey Walton PhD, Christine Y. Liu MD, Hwee Lin PhD, Eman Biltaj PhD, Diana Brixne PhD, Charles Barr MD, PhD, Jennifer Oberg EdD, Gurmit Shandhu, Uwe Siebert MD, MPH, MSc, ScD, Susan R. Snyder PhD, Simran Tiwana PhD, John Watkins Pharm D, MPH, BCPS, Maarten J. IJzerman PhD & Katherine Payne PhD. (2020). Being Precise About Precision Medicine: What Should Value Frameworks Incorporate to Address Precision Medicine? A Report of the Personalized Precision Medicine Special Interest Group. Value in Health, 23(5), 529-539.

    F. Randy Vogenberg, Carol Isaacson Barash & Michael Pursel. (2010). Personalized Medicine Part 2: Ethical, Legal, and Regulatory Issues. Pharmacy and Therapeutics (P&T), 35 (11), 624-626, 628-631, 642.

    Helén. (2013). Elémén politiikka biologisen muokattavuuden aikakaudella: ensimméinen kartoitus. Sosiologia, 50(4), 327-341.

    Hailiang Zhang, Xiaohui Liu, Meihui Liu, Tang Gao, Yuzhao Huang, Yi Liu & Wenbin Zeng. (2018). Gene detection: An essential process to precision medicine. Biosensors and Bioelectronics, 99(15), 625-636.

    Hyunjoon Kwon & Euy-Young Jung. (2018). The impact of policy on the growth of precision medicine. Health Policy and Technology, 7(4), 347-357.

    Hideaki Bando MD. (2018). The current status and problems confronted in delivering precision medicine in Japan and Europe. Current Problems in Cancer, 41(3), 166-175.

    Heta Tarkkala, Ilpo Helén & Karoliina Snell. (2019). From health to wealth: The future of personalized medicine in the making. Futures, 109, 142-152.

    Iman Hajirasouliha & Olivier Elemento. (2020). Precision medicine and artificial intelligence: overview and relevance to reproductive medicine. Fertility and Sterility, 114(5), 908-913.

    Irene Casanova -Salas, Alejandro Athie, Paul C. Boutros, Marzia Del Re, David T. Miyamoto, Kenneth J. Pienta, Edwin M. Posadas, Adam G. Sowalsky, Arnulf Stenzl, Alexander W. Wyatt, & Joaquin Mateo. (2021). Quantitative and Qualitative Analysis of Blood-based Liquid Biopsies to Inform Clinical Decision-making in Prostate Cancer. European Urology, online 7.

    Isabella Fornacon-Wood, Corinne Faivre-Finn, James PB O'Connor & Gareth J. Price. (2020). Radiomics as a personalized medicine tool in lung cancer: Separating the hope from the hype. Lung Cancer 146, 197-208.

    J.C. Fisher & R.H. Pry. (1971). A simple substitution model of technological change. Technological Forecasting and Social Change, 3, 75-88.

    Jacob D Davis, Carla MKumbale, Qiang Zhang, & Eberhard O Voit. (2019). Dynamical systems approaches to personalized medicine. Current Opinion in Biotechnology, 58, 168-174.

    Jonathan Tyler, Sung WonChoi, & Muneesh Tewari. (2020). Real-time, personalized medicine through wearable sensors and dynamic predictive modeling: A new paradigm for clinical medicine. Current Opinion in Systems Biology, 20, 17-25.

    Joao Ricardo Lavoie & Tugrul Daim. (2020). Towards the assessment of technology transfer capabilities: An action research-enhanced HDM model. Technology in Society, 60, 101217.

    Jan Trøst Jørgensen. (2021). The current landscape of the FDA approved companion diagnostics. Translational Oncology, 14(6), 101063.

    Kathryn A. Phillips PhD, Michael P. DouglasMS, Julia R. Trosman PhD & Deborah A. Marshall PhD. (2017). “What Goes Around Comes Around”: Lessons Learned from Economic Evaluations of Personalized Medicine Applied to Digital Medicine. Value in Health 20(1), 47-53.

    Karsten Conrad, Yehuda Shoenfeld & Marvin J. Fritzler. (2020). Precision health: A pragmatic approach to understanding and addressing key factors in autoimmune diseases. Autoimmunity Reviews, 19 (5), 102508.

    Kiely N. James, Sujal Phadke, Terence C. Wong & Shimul Chowdhury. (2020). Artificial Intelligence in the Genetic Diagnosis of Rare Disease. Advances in Molecular Pathology, 3, 143-155.

    Liliya Hogaboam & Tugrul Daim. (2018).Technology adoption potential of medical devices: The case of wearable sensor products for pervasive care in neurosurgery and orthopedics. Health Policy and Technology, 7(4), 409-419.

    Lin-Chau Chang & Thomas E. Colonna. (2018). Recent updates and challenges on the regulation of precision medicine: The United States in perspective. Regulatory Toxicology and Pharmacology, 96, 41-47.

    Lisa Barroilhet & Ursula Matulonis. (2018). The NCI-MATCH trial and precision medicine in gynecologic cancers. Gynecologic Oncology, 148 (3), 585-590.

    M.P. Hekkerta, R. A. A. Suurs, S. O. Negro, S. Kuhlmann & R. E. H. M. Smits. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological Forecasting and Social Change, 74 (4), 413-432.
    M. Coccia. (2018). Theorem of not Independence of any technological innovation. Journal of Economics Bibliography, 5(1), 29-35.

    M. Gray, J. Meehan, C. Ward, S. P. Langdon, I. H. Kunkler. A. Murray & D. Argyle. (2018). Implantable biosensors and their contribution to the future of precision medicine. The Veterinary Journal, 239, 21-29.

    M. Coccia. (2019). Theorem of not Independence of any technological innovationArtificial intelligence technology in cancer imaging: clinical challenges for detection of lung and breast cancer. Journal of Social and Administrative Sciences, 6, 82-98.

    M. Coccia. (2020). Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technology in Society, 60, 101198.

    Manuel Pristner & Benedikt Warth. (2020). Drug–Exposome Interactions: The Next Frontier in Precision Medicine. Trends in Pharmacological Sciences, 41(12), 994-1005.

    Nelson, R.. (2006). Evolutionary social science and universal Darwinism. Journal of Evolutionary Economics, 16(5), 491-510.

    Noël Malod-Dognin, Julia Petschnigg & Nataša Pržulj. (2018). Precision medicine ― A promising, yet challenging road lies ahead. Current Opinion in Systems Biology, 7, 1-7.

    Noura S. Abul-Husn & Eimear E. Kenny. (2019). Personalized Medicine and the Power of Electronic Health Records. Cell, 177(1), 58-69.

    Ning Wu & ZuanKuo Liu. (2021). Higher education development, technological innovation and industrial structure upgrade. Technological Forecasting and Social Change, 162, 120400.

    Olivia Evans MBBS, MRes, Faiza Gaba MRCOG & Ranjit Manchanda MD, MRCOG, PhD. (2020). Population-based genetic testing for Women's cancer prevention. Best Practice & Research Clinical Obstetrics & Gynaecology, 65, 139-153.

    Omer Adir, Maria Poley, Gal Chen, Sahar Froim, Nitzan Krinsky, Jeny Shklover, Janna Shainsky‐Roitman, Twan Lammers & Avi Schroeder. (2020). Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Advanced Materials, 32(13).

    P. Schuster. (2016). Major transitions in evolution and in technology: What they have in common and where they differ. Complexity, 21(4), 7-13.

    Paolo A. Ascierto, Carlo Bifulco, Giuseppe Palmieri, Solange Peters & Nikoletta Sidiropoulos. (2019). Preanalytic Variables and Tissue Stewardship for Reliable Next-Generation Sequencing (NGS) Clinical Analysis. The Journal of Molecular Diagnostics, 21(5), 756-767.

    Remal Abotah & Tugrul U. Daim. (2017). Towards building a multi perspective policy development framework for transition into renewable energy. Sustainable Energy Technologies and Assessments, 21, 67-88.

    Rui Oliveira-Silva, Mariana Sousa-Jerónimo, David Botequim, Nuno J. O. Silva, Pedro M. R. Paulo, & Duarte M. F. Prazeres. (2020). Monitoring Proteolytic Activity in Real Time: A New World of Opportunities for Biosensors. Trends in Biochemical Sciences, 5(7), 604-618.

    Scott Gottlieb, M.D. (2018, April). Transforming FDA's Approach to Digital Health. FDA. Retrieved from https://www.fda.gov/news-events/speeches-fda-officials/transforming-fdas-approach-digital-health-04262018

    Simon J. Hollingsworth. (2015). Precision medicine in oncology drug development: a pharma perspective. Drug Discovery Today, 20(12), 1455-1463.

    Subhas C. Misra & Sandip Bisui. (2018). Modelling vital success factors in adopting personalized medicine system in healthcare technology and management. Engineering Science and Technology, an International Journal, 21(3), 532-545.

    Sumant Ugalmugle & Rupali Swain. (2019, May). Biosensors Market Size By Type (Wearable, Non-wearable), By Technology (Electrochemical, Optical, Thermal, Piezoelectric), By Medical Application (Blood Glucose Testing, Cholesterol Testing, Blood Gas Analysis, Pregnancy Testing, Drug Discovery, Infectious Disease Testing), By End-use (Point of Care Testing, Home Healthcare Diagnostics, Research Laboratories) Industry Analysis Report, Regional Outlook, Application Potential, Competitive Market Share & Forecast, 2019 – 2025. Global Market Insights, GMI747. Retrieved from https://www.gminsights.com/industry-analysis/biosensors-market

    Saifur R. Khan, Yousef Manialawy, Michael B. Wheeler & Brian J. Cox. (2019). Unbiased data analytic strategies to improve biomarker discovery in precision medicine. Drug Discovery Today, 24(9), 1735-1748.

    Sunju Park, Seong-Cheon Woo, Hyo-Jeong Ban, Siwoo Lee, Song-Yi Kim & Hee-Jeong Jin. (2020). Perception on genetic testing in Korean medicine doctors: A mobile-based survey. Integrative Medicine Research, 10(2), 100643.

    Susana Ravassa, Arantxa González, Antoni Bayés-Genís, Josep Lupón & Javier Díez. (2020). Myocardial interstitial fibrosis in the era of precision medicine. Biomarker-based phenotyping for a personalized treatmentLa fibrosis intersticial miocárdica en la era de la medicina de precisión. El fenotipado basado en biomarcadores para un tratamiento personalizado. Revista Española de Cardiología, 73(3), 248-254.

    Stefano Denicolai & Pietro Previtali. (2020). Precision Medicine: Implications for value chains and business models in life sciences. Technological Forecasting and Social Change, 151, 119767.

    Tomohiro Makino, Yeongjoo Lim & Kota Kodama. (2018). Strategic R&D transactions in personalized drug development. Drug Discovery Today, 23(7), 1334-1339.

    Tugrul U. Daim, Byung-Sung Yoon, John Lindenberg, Robert Grizzi, Judith Estep & Terry Oliver. (2018). Strategic roadmapping of robotics technologies for the power industry: A multicriteria technology assessment. Technological Forecasting and Social Change, 131, 49-66.

    Trevor D. Hadley & Sandesh C. S. Nagamani. (2020). Handbook of Clinical Adult Genetics and Genomics - A Practice-Based Approach. New York, State of New York : Academic Press.

    Tomasz Kolenda, Kacper Guglas, Dawid Baranowski, Joanna Sobocińska, Magda Kopczyńska, Anna Teresiak, Renata Bliźniak & Katarzyna Lamperska. (2020). cfRNAs as biomarkers in oncology – still experimental or applied tool for personalized medicine already? Reports of Practical Oncology & Radiotherapy, 25(5), 783-792.

    Xiaofeng Jin, Conghui Liu,Tailin Xua, Lei Su, & Xue ji Zhang. (2020). Artificial intelligence biosensors: Challenges and prospects. Biosensors and Bioelectronics, 165, 112412.

    Xiaoqin Liu, Linzhe Jiang, Hongyan Wang & Chunyang Jiang. (2020). Importance of Effective Regulation for the Chinese Genetic Testing Industry. Trends in Biotechnology, 38(6), 577-579.

    Xiao Lv, Qian Wang, Xue ling Ge, Chao Xue & Xin Liu. (2021). Application of high-throughput gene sequencing in lymphoma. Experimental and Molecular Pathology, 119, 104606.

    Yasushi Okuno. (2018). SL2-2 - AI technology for precision medicine: current status and future perspectives. Annals of Oncology, 29, 7.

    Yang Du, Yafei Qi, Zhengyu Jin & Jie Tian. (2019). Noninvasive imaging in cancer immunotherapy: The way to precision medicine. Cancer Letters 466, 13-22.

    Zachary Braig. (2019). Personalized medicine: From diagnostic to adaptive. Biomedical Journal, online 9.

    Zodwa Dlamini, Flavia Zita Francies, Rodney Hull & Rahaba Marima. (2020). Artificial intelligence (AI) and big data in cancer and precision oncology. Computational and Structural Biotechnology Journal, 18, 2300-2311.

    無法下載圖示 電子全文延後公開
    2026/10/25
    QR CODE