簡易檢索 / 詳目顯示

研究生: 林子晶
Lin, Zih-Jing
論文名稱: 奈米碳管光磁性研究與探討
Photomagnetic Carbon Nanotubes: Preparation and Analysis
指導教授: 王忠茂
Wang, Chong-Mou
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 112
中文關鍵詞: 三聯吡啶釕錯合物5-胺基菲羅啉含釕錯合物多層奈米碳管含釕奈米碳管磁性奈米碳管光誘發磁性藍光雷射原子力顯微術
英文關鍵詞: [Ru(bpy)3]2+, NH2-phen, [Ru(bpy)2(NH2-phen)]2+, MWCNT, Ru@CNT, magnetic carbon nanotubes, photo-induced magnetism, blue laser, AFM
論文種類: 學術論文
相關次數: 點閱:179下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於三聯吡啶釕錯合物(Tris(2,2'-bipyridine) ruthenium(Ⅱ),簡稱[Ru(bpy)3]2+)是一具電化學發光特性的光敏劑,可在可見光照射下進行metal-to-ligand charge transfer(簡稱MLCT),具光電應用潛力,本實驗遂製備[Ru(bpy)3]2+的5-胺基菲羅啉(5-amino-1,10-
    phenanthroline,簡稱NH2-phen)衍生物:Bis(2,2'-bipyridine)-5-amino-
    1,10-phenanthroline ruthenium(Ⅱ)(簡稱[Ru(bpy)2(NH2-phen)]2+),再利用化學偶氮修飾法將之修飾在多層奈米碳管表面,得到含釕錯合物奈米碳管,簡稱為Ru@CNT,以進行光磁轉換探討。
    實驗結果顯示:在合成條件為13.5 mg [Ru(bpy)2(NH2-phen)]2+、5 mg CNT、0.8 mg NaNO2、20 mg AA與10 mL的0.1 M HCl,反應溫度為80℃,反應時間24 h,能合成出表面修飾較為均勻的Ru@CNT。若以VSM、AC susceptibility分析法、磁性模組與導電模組AFM進行分析,我們發現Ru@CNT受到藍光雷射(ex: 473 nm)照射時,表面上的釕吸附微粒會產生電荷分離,電子組態會由單重態轉變成參重態,而在室溫下產生磁性。若進一步分析其電子躍遷能位,我們推論Ru@CNT受光激發時,電子轉移障礙約為0.5 eV。由於此時MFM所測得的相位差明顯增加,間接證實其光磁性來自電荷分離與電荷轉移,顯示Ru@CNT具有光電與光磁轉換應用潛力。

    Bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) (Ru(bpy)2(NH2-phen)2+) is an MLCT complex, possessing a long-lived triplet state in water and a structure analogous to Ru(bpy)32+. When Ru(bpy)2(NH2-phen)2+ was subjected to diazotization in the presence of carbon nanotubes (CNTs), it formed nanodots on the CNTs, rendering the resulting tubes (Ru@CNT) capable of transducing photo stimuli (473 nm) into electricity and magnetism at ambient conditions. The increased functionality was highly reproducible, confirmed by the conductive-mode AFM, vibrating sample magnetometry (VSM), and AC susceptibility analysis. Local magnetism probing of the Ru@CNT with the magnetic-mode AFM techniques (MFM) indicated that the magnetism was originating from the photoexcited nanodots. The resulting phase shift behaved as a function of the luminous power and the voltage (Vb) of the electrical bias applied to the Ru@CNT. The Vb dependence deviated from the expected quadratic correlation, suggesting that the formation of the triplet state at the nanodots could be a limiting factor for the photomagnetism. Nevertheless, the Ru@CNT tubes showed mobility toward an external magnet when exposed to visible light on water. The Ru@CNT is thus shown as a multifunctional material that might be useful in spintronics.

    謝誌 圖目錄 III 表目錄 VI 摘要 1 Abstract 3 第一章 緒論 4 1-1 奈米碳管的起源與基本性質 4 1-2 奈米碳管的應用 7 1-3 磁性物質基本特性與分類 8 1-4 磁性粒子的應用 11 1-5 釕金屬錯合物的發展與應用 13 1-6 原子力顯微鏡 15 1-7 光敏劑特性與應用 17 1-8 研究動機 19 第二章 實驗與步驟 20 2-1 儀器設備 20 2-2 化學藥品 22 2-3 [Ru(bpy)2(NH2-phen)]2+之合成製備 24 2-4 多層奈米碳管清洗與前處理 25 2-5 [Ru(bpy)2(NH2-phen)]2+修飾奈米碳管製備 27 2-6 ITO導電玻璃清洗 28 2-7 AFM形貌掃瞄之操作步驟 29 2-8 MFM照光實驗之操作步驟 33 2-9 C-AFM電流電壓變化實驗之操作步驟 35 2-10 VSM與AC操作步驟 37 2-11 Ru@CNT錄影操作步驟 38 第三章 實驗結果與討論 39 3-1 [Ru(bpy)2(NH2-phen)]2+之基本性質 39 3-2 [Ru(bpy)2(NH2-phen)]2+修飾奈米碳管之合成 43 3-3 Ru@CNT之參數最佳化 46 3-4 Ru@CNT之性質 56 3-5 Ru@CNT之磁性探討 60 3-6 Ru@CNT之光電分析 81 3-7 Ru@CNT之磁性觀察攝影 92 第四章 結論 93 第五章 未來展望 94 第六章 參考文獻 95 第七章 附錄 104 縮寫表 112

    [1] S. Iijima, Nature 1991, 354, 56.
    [2] J. M. Schnorr, T. M. Swager, Chem. Mater. 2011, 23, 646.
    [3] K. Balasubramanian, M. Burghard, Small 2005, 1, 180.
    [4] C. A. Furtado, U. J. Kim, H. R. Gutierrez, L. Pan, E. C. Dickey, P. C. Eklund, J. Am. Chem. Soc. 2004, 126, 6095.
    [5] G. C. Zhao, L. Zhang, X. W. Wei, Z. S. Yang, Electrochem. Commun. 2003, 5, 825.
    [6] M. Zdrojek, W. Gebicki, C. Jastrzebski, T. Melin, A. Huczko, Solide State Phenomena 2004, 99, 265.
    [7] A. Vlandas, T. Kurkina, A. Ahmad, K. Kern, K. Balasubramanian, Anal. Chem. 2010, 82, 6090.
    [8] L. Kong, J. Wang, T. Luo, F. Meng, X. Chen, M. Li, J. Liu, Analyst 2010, 135, 368.
    [9] C. Baleiz#westeur036#o, B. Gigante, H. Garcia, A. Corma, J. Catal. 2004,221, 77.
    [10] Z. Yao, N. Braidy, G. A. Botton, A. Adronov, J. Am. Chem. Soc. 2003, 125, 16015.
    [11] M. Knez, M. Sumser, A. M. Bittner, C. Wege, H. Jeske, S. Kooi, M. Burghard, K. Kern, J. Electroanal. Chem. 2002, 522, 70.
    [12] S. Heinze, J. Tersoff, P. Avouris, Appl. Phys. Lett. 2003, 83, 5038.
    [13] C. Staii, A. T. J. Johnson, M. Chen, A. Gelperin, Nano Lett. 2005, 5, 1774.
    [14] C. E. Banks, T. J. Davies, G. G. Wildgoose, R. G. Compton, Chem. Commun. 2005, 829.
    [15] T. A. Silva, H. Zanin, F. C. Vicentini, E. J. Corat, O. F. Filho, Analyst 2014, 139, 2832.
    [16] 金重勳編,中華民國磁性技術學會出版,磁性技術手冊
    [17] 張喣,李學養,聯經出版,磁性物理學
    [18] J. F. Scott, Science 2007, 315, 954.
    [19] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, E. L. Vander, N. R. Muller, Chem. Rev. 2008, 108, 2064.
    [20] Y. Yin, D. V. Talapinb, Chem. Soc. Rev. 2013, 42, 2484.
    [21] X. Liu, I. Marangon, G. Melinte, C. Wilhelm, C. M. Moyon, B. P. Pichon, O. Ersen, K. Aubertin, W. Baaziz, C. P. Huu, S. B. Colin, A. Bianco, F. Gazeau, D. B#westeur042#gin, ACS Nano 2014, 8, 11290.
    [22] Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, J. Phys. Appl. Phys. 2003, 36, R167.
    [23] L. H. Reddy, J. L. Arias, J. Nicolas, P. Couvreur, Chem. Rev. 2012, 112, 5818.
    [24] I. T. Kim, A. Magasinski, K. Jacob, G. Yushin, R. Tannenbaum, Carbon 2013, 52, 56.
    [25] J. Y. Son, I. Jung, Y. H. Shin, J. Phys. Chem. C 2013, 117, 12890.
    [26] G. E. Grechnev, V. A. Desnenko, A. V. Fedorchenko, A. S. Panfilov, Y. I. Prylutskyy, M. I. Grybova, L. Y. Matzui, U. Ritter, P. Scharff, Y. A. Kolesnichenko, Carbon 2011, 49, 4443.
    [27] R. O. Monllau, F. X. M. Pascual, E. Baldrich, Sensors and Actuators B 2013, 185, 685.
    [28] T. W. Odom, J. L. Huang, C. L. Cheung, C. M. Lieber, Science 2000, 290, 1549.
    [29] F. H. Burstall, J. Chem. Soc. 1936, 173.
    [30] N. E. Tokel, A. J. Bard, J. Am. Chem. Soc. 1972, 94, 2862.
    [31] R. Y. Lai, M. Chiba, N. Kitamura, A. J. Bard, Anal. Chem. 2002, 74, 551.
    [32] M. Zhou, G. P. Robertson, J. Roovers, Inorg. Chem. 2005, 44, 8317.
    [33] M. Dickerson, Y. Sun, B. Howerton, E. C. Glazer, Inorg. Chem. 2014, 53, 10370.
    [34] H. Qi, M. Li, M. Dong, S. Ruan, Q. Gao, C. Zhang, Anal. Chem. 2014, 86, 1372.
    [35] M. M. Richter, A. J. Bard, W. Kim, R. H. Schmehl, Anal. Chem. 1998, 70(2), 310.
    [36] P. Bertoncello, E. T. Kefalas, Z. Pikramenou, P. R. Unwin, R. J. Forster, J. Phys. Chem. B 2006, 110, 10063.
    [37] G. J. Barbante, P. S. Francis, C. F. Hogan, P. R. Kheradmand, D. J. D. Wilson, P. J. Barnard, Inorg. Chem. 2013, 52, 7448.
    [38] H. J. Nie, J. Yao, Y. W. Zhong, J. Org. Chem. 2011, 76, 4771.
    [39] S. Sun, Y. Yang, F. Liu, Y. Pang, J. Fan, L. Sun, X. Peng, Anal. Chem. 2009, 81, 10227.
    [40] M. J. Li, Z. Chem, V. W. W. Yam, Y. Zu, ACS Nano 2008, 2, 905.
    [41] C. D. Ellis, L. D. Margerum, R. W. Murray, T. J. Meyer, Inorg. Chem. 1983, 22, 1283.
    [42] D. J. E. Piper, G. J. Barbante, N. Brack, P. J. Pigram, C. F. Hogan, Langmuir 2011, 27, 474.
    [43] B. Reuillard, A. L. Goff, S. Cosnier, Anal. Chem. 2014, 86, 4409.
    [44] 梁秉怡,國立臺灣師範大學化學研究所碩士論文,化學修飾電極之光電性質研究,2002
    [45] 張珮玟,國立臺灣師範大學化學研究所碩士論文,含釕配位化合物-黏土修飾電極之研究,2003
    [46] 韓岳樺,國立臺灣師範大學化學研究所碩士論文,釕胺基菲羅啉衍生物之製備和應用,2012
    [47] 張庭瑜,國立臺灣師範大學化學研究所碩士論文,含釕胺基取代聯吡啶釕錯合物修飾奈米碳管之研究與應用,2013
    [48] 林煒舜,國立臺灣師範大學化學研究所碩士論文,羫基喹啉鋁錯合物組合反應及5-胺基菲羅啉聯吡啶釕錯合物光電轉換分析,2014
    [49] G. Binning, C. F. Quate, C. Gerber, Phys. Rev. Lett. 1986, 56, 930.
    [50] M. Gavagnin, H. D. Wanzenboeck, S. Wachter, M. M. Shawrav, A. Persson, K. Gunnarsson, P. Svedlindh, M. S. Pollach, E. Bertagnolli, ACS Appl. Mater. Interfaces 2014, 6, 20254.
    [51] J. H. Hoh, A. Engel, Langmuir 1993, 9, 3310.
    [52] R. F. Tabor, H. Lockie, D. Mair, R. Manica, D. Y. C. Chan, F. Grieser, R. R. Dagastine, J. Phys. Chem. Lett. 2011, 2, 961.
    [53] N. Hoepker, S. Lekkala, R. F. Loring, J. A. Marohn, J. Phys. Chem. B 2011, 115, 14493.
    [54] Q. Li, S. Jesse, A. Tselev, L. Collins, P. Yu, I. Kravchenko, S. V. Kalinin, N. Balke, ACS Nano 2015, 9, 1848.
    [55] D. J. R. Appleby, N. K. Ponon, K. S. K. Kwa, B. Zou, P. K. Petrov, T. Wang, N. M. Alford, A. O. Neill, Nano Lett. 2014, 14, 3864.
    [56] D. E. Ferrer, M. A. Edwards, L. Fumagalli, A. Ju#westeur034#rez, G. Gomila, ACS Nano 2014, 8, 9843.
    [57] B. C. Bunker, B. I. Kim, J. E. Houston, R. Rosario, A. A. Garcia, M. Hayes, D. Gust, S. T. Picraux, Nano Lett. 2003, 3, 1723.
    [58] D. J. Hardy, Z. Wu, J. C. Phillips, J. E. Stone, R. D. Skeel, K. Schulten, J. Chem. Theory Comput. 2015, 11, 766.
    [59] S. Block, G. Gl#westeur055#ckl, W. Weitschies, C. A. Helm, Nano Lett. 2011, 11, 3587.
    [60] H. Li, X. Qi, J. Wu, Z. Zeng, J. Wei, H. Zhang, ACS Nano 2013, 7, 2842.
    [61] R. N. Patel, A. T. Heitsch, C. Hyun, D. M. Smilgies, A. d. Lozanne, Y. L. Loo, B. A. Korgel, ACS Appl. Mater. Interfaces 2009, 1, 1339.
    [62] H. Cui, S. V. Kalinin, X. Yang, D. H. Lowndes, Nano Lett. 2004, 4, 2157.
    [63] S. Xu, G. Poirier, N. Yao, Nano Lett. 2012, 12, 2238.
    [64] J. Varghese, T. Ghoshal, N. Deepak, C. O. Regan, R. W. Whatmore, M. A. Morris, J. D. Holmers, Chem. Mater. 2013, 25, 1458.
    [65] C. Halperin, S. Mutchnik, A. Agronin, M. Molotskii, P. Urenski, M. Salai, G. Rosenman, Nano Lett. 2004, 4, 1253.
    [66] Z. Zhou, H. Tang, H. A. Sodano, ACS Appl. Mater. Interfaces 2013, 5, 11894.
    [67] 張育甄,國立臺灣師範大學化學研究所碩士論文,敏光劑吸附沸石微粒之光電研究,2001
    [68] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon. 2008, 46, 833.
    [69] L. Liu, Y. Qin, Z. X. Guo, D. Zhu, Carbon 2003, 41, 331.
    [70] 蔡毓楨、薛富盛、呂福興、吳宗明,教育部中南區奈米科技K-12 教育發展中心系列叢書,原子力顯微鏡實作訓練教材,2007
    [71] W. T. Chuang, C. H. Wang, C. M. Wang, J. Electroanal. Chem. 2002, 521, 175.
    [72] C. Lu, A. W. Czanderna, Methods and Phenomena 1984, 7, 1.
    [73] E. Coulon, J. Pinson, Langmuir 2001, 17, 7102.
    [74] A. Roglans, A. P. Quintana, M. M. Manas, Chem. Rev. 2006, 106, 4622.
    [75] M. Bouriga, M. M. Chehimi, C. Combellas, P. Decorse, F. Kanoufi, A. Deronzier, J. Pinson, Chem. Mater. 2013, 25, 90.
    [76] P. Doppelt, G. Hallais, J. Pinson, F. Podvorica, S. Verneyre, Chem. Mater. 2007, 19, 4570.
    [77] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon 2008, 46, 833.
    [78] W. Baaziz, S. B. Colin, B. P. Pichon, I. Florea, O. Ersen, S. Zafeiratos, R. Barbosa, D. Begin, C. P. Huu, Chem. Mater. 2012, 24, 1549.
    [79] M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, R. Saito, Carbon 2002, 40, 2043.
    [80] A. M. Rao, E. Ritcher, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus, Science 1997, 275, 187.
    [81] J. M. Benoit, J. P. Buisson, O. Chauvet, C. Godon, S. Lefrant, Phys. Rev. B 2002, 66, 3407.
    [82] H. Jantoljak, J. P. Salvetat, L. Forro, C. Thomsen, Appl. Phys. A: Mater. Sci. Process. 1998, 67, 113.
    [83] H. Kataura, Y. Achiba, X. Zhao, J. Robertson, Mater. Res. Soc. Symp. Proc. 2000, 593, 113.
    [84] V. O. Khavrus, E. M. M. Ibrahim, A. Bachmatiuk, M. H. R#westeur061#mmeli, A. U. B. Wolter, S. Hampel, A. Leonhardt, J. Nanopart. Res. 2012, 14, 914.
    [85] S. Mohapatra, R. K. Kumar, T. K. Maji, Chem. Phys. Lett. 2011, 508, 76.
    [86] W. Luo, S. J. Pennycook, S. T. Pantelides, Nano Lett. 2008, 8, 661.
    [87] Y. Sakamoto, Y. Oba, H. Maki, M. Suda, Y. Einaga, Y. Sato, M. Mizumaki, N. Kawamura, M. Suzuki, Phys. Rev. B 2011, 83, 104420.
    [88] Y. T. Chen, S. M. Xie, H. Y. Jheng, J. Appl. Phys. 2013, 113, 17B303.

    下載圖示
    QR CODE