研究生: |
朱家瑩 Chu, Chia-Ying |
---|---|
論文名稱: |
環境變遷以及不同尺度環境因子與宿主群聚對於節肢動物病媒的影響:以恙蟎為例 The effect of environmental change, environmental factors at different scales and host assemblage on arthropod disease vectors: A case study of chiggers |
指導教授: |
郭奇芊
Kuo, Chi-Chien |
口試委員: |
李佩珍
Lee, Pei-Jen 王錫杰 Wang, Hsi-Chieh 郭奇芊 Kuo, Chi-Chien |
口試日期: | 2022/09/22 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 病媒傳染病 、恙蟎 、人為干擾 、微棲地 、土地利用 |
英文關鍵詞: | vector-borne disease, chigger, human disturbance, microhabitat, land use |
研究方法: | 調查研究 、 觀察研究 、 田野調查法 |
DOI URL: | http://doi.org/10.6345/NTNU202201717 |
論文種類: | 學術論文 |
相關次數: | 點閱:85 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類感染病媒傳染病的風險,和病媒的數量有關,而病媒數量除了受到環境因子控制外,亦會受到宿主種類影響,某些宿主種類能提供病媒較營養的食物來源。恙蟲病為由恙蟎幼蟎所傳播的立克次體疾病,主要流行於西太平洋地區,包括臺灣。恙蟎的生活史主要包括卵、幼蟎、若蟎和成蟎四個時期,幼蟎為寄生性,主要宿主為齧齒類動物,若蟎和成蟎則行自由生活,以土壤中其他節肢動物為食。本研究旨在探討兩個問題:一是不同尺度的環境因子,包括小尺度的微棲地特徵和較大尺度的土地利用,以及老鼠種類,如何影響花蓮-恙蟲病流行地區-的幼蟎數量,包括外來種緬甸小鼠入侵的可能影響;二是環境變遷對於該地區的幼蟎數量與當地的老鼠寄生恙蟎狀況的影響。2020-2021年於花蓮不同棲地環境的64個樣點,每樣點設置39個捕鼠籠連續捕捉老鼠3晚(共7,488個籠夜),並計數老鼠身上寄生的幼蟎數量,同時測量每個樣點內30個捕捉籠位分別的微棲地特徵,以及計算樣點半徑一公里內的土地利用狀況和人口數。本研究基於人口密度的差異,將樣區分為人為干擾程度相對較高的北部區域(包括花蓮市、吉安鄉以及壽豐鄉中部以北的區域)以及干擾相對較低的南部區域(包括壽豐鄉中部以南至鳳林鎮的區域)。結果顯示緬甸小鼠和赤背條鼠分別是北部和南部區域最常捕捉到的種類。南部區域每樣點可採集到的恙蟎數量約為北部區域的25倍,數種恙蟎主要宿主的恙蟎寄生量也以南部區域顯著較北部區域高。恙蟎種類以英帕恙蟎(Leptotrombidium imphalum)(95.43%)為主。分析恙蟎數量與微棲地、土地利用和動物宿主數量的關係,發現區域會顯著影響恙蟎數量,恙蟎數量也和樹林面積以及小黃腹鼠、赤背條鼠的數量呈正相關,而旱田面積、田和植被鑲嵌面積以及緬甸小鼠數量在不同區域對恙蟎數量有不同的影響,微棲地則無顯著的影響。與2007-2008年在相同季節,採用相同捕捉方式的46個樣點相比,2020-2021年時恙蟎數量在南北兩區域均顯著變少,尤其是在人為干擾程度較嚴重的北部區域,推論可能與宿主數量減少以及環境改變有關。南部區域恙蟎數量的減少無法確定是否導因於緬甸小鼠的入侵,這是由於2007-2008年至2020-2021年間,還伴隨著棲地環境的改變,同時也會影響恙蟎的數量。本研究顯示人為干擾會顯著降低恙蟎的數量,日後研究應該同時探討土壤特性對於恙蟎的可能影響以及釐清緬甸小鼠與其他原生種齧齒類動物宿主的關係,以得知緬甸小鼠入侵是否會如何影響恙蟎的數量。
Human risk to vector-borne diseases is associated with number of vectors, which could be influenced by environmental factors and host assemblage. Scrub typhus, a vector-born disease caused by the rickettsia Orientia tsutsugamushi and transmitted by larval trombiculid mites, is prevalent in the western Pacific, including Taiwan. The life cycle of trombiculid mites involves four main stages: egg, larva (chigger), nymph and adult. Nymphs and adults are free-living while chiggers are parasitical and rodents are the main hosts. This study aims to investigate how environmental factors of different spatial scales (microhabitat and surrounding land use) and host species, including the invasion of Rattus exulans, would affect chiggers in Hualien of eastern Taiwan, a hotspot of scrub typhus. In addition, the effect of environmental change on chiggers was also be investigated. A field survey including small mammal trapping, chigger collection, microhabitat measurements, and inventory of land use and population density within 1-km radius was conducted at 64 sites in Hualien between September 2020 to March 2021. Each site was deployed with 39 traps for 3 consecutive nights (totaling 7,488 trap-nights), and chiggers were collected from trapped small mammals. I also divided the study area into northern and southern regions based on the difference in population density, with more human disturbance in northern than southern region. The results showed that R. exulans and Apodemus agrarius were the most common species in northern and southern regions, respectively. The number of chiggers per study site in southern region was 25 times that in northern region. Chigger loads of several major chigger hosts were significantly higher in southern than in northern regions. Leptotrombidium imphalum was the most common chigger species (95.43% of all identified chiggers). The number of chiggers was affected by region, area of forest, number of R. losea and number of A. agrarius. Besides, effect of area of rainfed cropland, area of natural vegetation/cropland mosaic, and number of R. exulans on chiggers varied with regions. Microhabitat had no effect on chiggers. Between 2007 and 2008, 46 sites were surveyed in Hualien with the same sampling design and in the same seasons. Number of chiggers was significantly lower in 2020-2021 than in 2007-2008 in both regions, particularly in northern region with more human disturbance. Such reduction in the number of chiggers was likely related to the reduced number of hosts and environmental change. It cannot be confirmed that the decreasing number of chiggers in southern region was attributed mainly to the invasion of R. exulans. This is due to that, from 2007-2008 to 2020-2021, environmental change which can also affect chiggers through effect on soils also occurred. This study demonstrates the suppressive effect of human disturbance on chiggers. Further studies could investigate how properties of soil would affect chiggers. Additionally, elucidating interactions between R. exulans and other rodent species would help reveal the potential effect of R. exulans expansion on chiggers.
張靖汝。2019。土地利用改變對花蓮地區小型哺乳類群聚的影響。國立東華大學自然資源與環境學系研究所碩士論文。
鍾珞璿,吳文哲,王錫杰。2015。台灣恙蟎誌。衛生福利部疾病管制署。
An, Y., Liu, S., Sun, Y., Shi, F., & Zhao, S. (2020). Negative effects of farmland expansion on multi-species landscape connectivity in a tropical region in Southwest China. Agricultural Systems, 179, 102766.
Andreassen, H. P., Sundell, J., Ecke, F., Halle, S., Haapakoski, M., Henttonen, H., Huitu, O., Jacob, J., Johnsen, K., Koskela, E., Luque-Larena, J. J., Lecomte, N., Leirs, H., Mariën, J., Neby, M., Rätti, O., Sievert, T., Singleton, G. R., van Cann, J., … Ylönen, H. (2021). Population cycles and outbreaks of small rodents: Ten essential questions we still need to solve. Oecologia, 195(3), 601–622.
Audy, J. R., & Harrison, J. L. (1951). A review of investigations of mite typhus in Burma and Malaya, 1945–1950. Transactions of the Royal Society of Tropical Medicine and Hygiene, 44(4), 371–404.
Braks, M., Medlock, J. M., Hubalek, Z., Hjertqvist, M., Perrin, Y., Lancelot, R., Duchyene, E., Hendrickx, G., Stroo, A., Heyman, P., & Sprong, H. (2014). Vector-borne disease intelligence: strategies to deal with disease burden and threats. Frontiers in Public Health, 2, 280.
Burnham, K. P., Anderson, D. R., & Burnham, K. P. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.). Springer.
Chalkowski, K., Lepczyk, C. A., & Zohdy, S. (2018). Parasite ecology of invasive species: conceptual framework and new hypotheses. Trends in Parasitology, 34(8), 655–663.
Chen, Y.-L., Guo, X.-G., Ren, T.-G., Zhang, L., Fan, R., Zhao, C.-F., Zhang, Z.-W., Mao, K.-Y., Huang, X.-B., & Qian, T.-J. (2021). A report of chigger mites on the striped field mouse, Apodemus agrarius, in Southwest China. The Korean Journal of Parasitology, 59(6), 625–634.
Cohen, J. M., Civitello, D. J., Brace, A. J., Feichtinger, E. M., Ortega, C. N., Richardson, J. C., Sauer, E. L., Liu, X., & Rohr, J. R. (2016). Spatial scale modulates the strength of ecological processes driving disease distributions. Proceedings of the National Academy of Sciences, 113(24), E3359–E3364.
Creed, R. P., Brown, B. L., & Skelton, J. (2022). The potential impacts of invasions on native symbionts. Ecology, 103(8), e3726.
Diuk-Wasser, M. A., VanAcker, M. C., & Fernandez, M. P. (2021). Impact of land use changes and habitat fragmentation on the eco-epidemiology of tick-borne diseases. Journal of Medical Entomology, 58(4), 1546–1564.
Elliott, I., Pearson, I., Dahal, P., Thomas, N. V., Roberts, T., & Newton, P. N. (2019). Scrub typhus ecology: A systematic review of Orientia in vectors and hosts. Parasites & Vectors, 12(1), 513.
ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
Estrada-Peña, A., Ostfeld, R. S., Peterson, A. T., Poulin, R., & de la Fuente, J. (2014). Effects of environmental change on zoonotic disease risk: An ecological primer. Trends in Parasitolology, 30(4), 205–214.
Flies, E. J., Weinstein, P., Anderson, S. J., Koolhof, I., Foufopoulos, J., & Williams, C. R. (2018). Ross River virus and the necessity of multiscale, eco-epidemiological analyses. The Journal of Infectious Diseases, 217(5), 807–815.
Gompper, M. E. (2002). Top carnivores in the suburbs? Ecological and conservation issues raised by colonization of north-eastern North America by coyotes: The expansion of the coyote’s geographical range may broadly influence community structure, and rising coyote densities in the suburbs may alter how the general public views wildlife. BioScience, 52(2), 185–190.
Goodin, D. G., Jonsson, C. B., Allen, L. J. S., & Owen, R. D. (2018). Integrating landscape hierarchies in the discovery and modeling of ecological drivers of zoonotically transmitted disease from wildlife. In C. J. Hurst (Ed.), The Connections Between Ecology and Infectious Disease (pp. 299–317). Springer International Publishing.
Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32(3), 390–399.
Juo, A. S. R., & Lal, R. (1977). The effect of fallow and continuous cultivation on the chemical and physical properties of an alfisol in western Nigeria. Plant and Soil, 47(3), 567–584.
Kelly DW, Paterson RA, Townsend CR, Poulin R, Tompkins DM. (2009). Parasite spillback: a neglected concept in invasion ecology?. Ecology 90: 2047-2056.
Kilpatrick, A. M., & Randolph, S. E. (2012). Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet, 380(9857), 1946–1955.
Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078.
Kotliar, N. B., & Wiens, J. A. (1990). Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos, 59(2), 253–260.
Kuo, C. C., Huang, C. L., & Wang, H. C. (2011a). Identification of potential hosts and vectors of scrub typhus and tick-borne spotted fever group rickettsiae in eastern Taiwan. Medical and Veterinary Entomology, 25(2), 169–177.
Kuo, Chi-Chien, Wang, H.-C., & Huang, C.-L. (2011b). The potential effect of exotic Pacific rats Rattus exulans on vectors of scrub typhus. Journal of Applied Ecology, 48(1), 192–198.
Kuo, C.-C., Wang, H.-C., & Huang, C.-L. (2011c). Variation within and among host species in engorgement of larval trombiculid mites. Parasitology, 138(3), 344–353.
Kuo, C.-C., Huang, J.-L., Ko, C.-Y., Lee, P.-F., & Wang, H.-C. (2011d). Spatial analysis of scrub typhus infection and its association with environmental and socioeconomic factors in Taiwan. Acta Tropica, 120(1–2), 52–58.
Kuo, C.-C., Huang, J.-L., Shu, P.-Y., Lee, P.-L., Kelt, D. A., & Wang, H.-C. (2012). Cascading effect of economic globalization on human risks of scrub typhus and tick-borne rickettsial diseases. Ecological Applications, 22(6), 1803–1816.
Kuo, C.-C., Lee, P.-L., Chen, C.-H., & Wang, H.-C. (2015). Surveillance of potential hosts and vectors of scrub typhus in Taiwan. Parasites & Vectors, 8, 611.
Kuo, C.-C., Lee, P.-L., & Wang, H.-C. (2020). Molecular detection of Rickettsia species and host associations of Laelaps mites (Acari: Laelapidae) in Taiwan. Experimental and Applied Acarology, 81(4), 547–559.
Lambin, E. F., Tran, A., Vanwambeke, S. O., Linard, C., & Soti, V. (2010). Pathogenic landscapes: Interactions between land, people, disease vectors, and their animal hosts. International Journal of Health Geographics, 9(1), 54.
Levi, T., Kilpatrick, A. M., Mangel, M., & Wilmers, C. C. (2012). Deer, predators, and the emergence of Lyme disease. Proceedings of the National Academy of Sciences, 109(27), 10942–10947.
Luce-Fedrow, A., Lehman, M. L., Kelly, D. J., Mullins, K., Maina, A. N., Stewart, R. L., Ge, H., John, H. S., Jiang, J., & Richards, A. L. (2018). A review of scrub typhus (Orientia tsutsugamushi and related organisms): then, now, and tomorrow. Tropical Medicine and Infectious Disease, 3(1), 8.
Maaz, D., Krücken, J., Blümke, J., Richter, D., McKay-Demeler, J., Matuschka, F.-R., Hartmann, S., & Samson-Himmelstjerna, G. von. (2018). Factors associated with diversity, quantity and zoonotic potential of ectoparasites on urban mice and voles. PLOS One, 13(6), e0199385.
Marselle, M. R., Stadler, J., Korn, H., Irvine, K. N., & Bonn, A. (Eds.). (2019). Biodiversity and Health in the Face of Climate Change. Springer Nature.
Matthee, S., Stekolnikov, A. A., Mescht, L. van der, Froeschke, G., & Morand, S. (2020). The diversity and distribution of chigger mites associated with rodents in the South African savanna. Parasitology, 147(9), 1038–1047.
McGill, B. J. (2010). Matters of Scale. Science, 328(5978), 575–576.
Medlock, J. M., & Leach, S. A. (2015). Effect of climate change on vector-borne disease risk in the UK. The Lancet Infectious Diseases, 15(6), 721–730.
Motokawa M, Liu KH, Harada M, Lin LK. (2001). New records of the Polynesian rat Rattus exulans (Mammalia: Rodentia) from Taiwan and the Ryukyus. Zoological Studies 40: 299-304.
Neal, T. J., & Barnett, H. C. (1961). The life cycle of the scrub typhus chigger mite, Trombicula akamushi1. Annals of the Entomological Society of America, 54(2), 196–203.
Parham, P. E., Waldock, J., Christophides, G. K., Hemming, D., Agusto, F., Evans, K. J., Fefferman, N., Gaff, H., Gumel, A., LaDeau, S., Lenhart, S., Mickens, R. E., Naumova, E. N., Ostfeld, R. S., Ready, P. D., Thomas, M. B., Velasco-Hernandez, J., & Michael, E. (2015). Climate, environmental and socio-economic change: Weighing up the balance in vector-borne disease transmission. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1665), 20130551.
Peng, P.-Y., Guo, X.-G., Song, W.-Y., Hou, P., Zou, Y.-J., Fan, R., & He, X.-S. (2015). Analysis of ectoparasites (chigger mites, gamasid mites, fleas and sucking lice) of the Yunnan red-backed vole (Eothenomys miletus) sampled throughout its range in southwest China. Medical and Veterinary Entomology, 29(4), 403–415.
Peng, P.-Y., Guo, X.-G., Jin, D.-C., Dong, W.-G., Qian, T.-J., Qin, F., Yang, Z.-H., & Fan, R. (2018). Landscapes with different biodiversity influence distribution of small mammals and their ectoparasitic chigger mites: A comparative study from southwest China. PLoS One, 13(1), e0189987.
Rousk, J., Brookes, P. C., & Bååth, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75(6), 1589–1596.
Santibáñez, P., Palomar, A. M., Portillo, A., Santibáñez, S., & Oteo, J. A. (2015). The role of chiggers as human pathogens. In Samie, A. (Ed.), An Overview of Tropical Diseases (2nd ed., pp. 173–202). IntechOpen.
Swei, A., Couper, L. I., Coffey, L. L., Kapan, D., & Bennett, S. (2020). Patterns, drivers, and challenges of vector-borne disease emergence. Vector-Borne and Zoonotic Diseases, 20(3), 159–170.
Traub, R., & Wisseman, C. L. (1974). The ecology of chigger-borne rickettsiosis (scrub typhus). Journal of Medical Entomology, 11(3), 237–303.
Václavík, T., Balážová, A., Baláž, V., Tkadlec, E., Schichor, M., Zechmeisterová, K., Ondruš, J., & Široký, P. (2021). Landscape epidemiology of neglected tick-borne pathogens in central Europe. Transboundary and Emerging Diseases, 68(3), 1685–1696.
Vora, N. (2008). Impact of anthropogenic environmental alterations on vector-borne diseases. The Medscape Journal of Medicine, 10(10), 238.
Wang, T., Cao, X., Chen, M., Lou, Y., Wang, H., Yang, Q., Pan, H., & Zhuge, Y. (2022). Effects of soil acidification on bacterial and fungal communities in the Jiaodong Peninsula, Northern China. Agronomy, 12(4), 927.
Wale, M., & Yesuf, S. (2022). Abundance and diversity of soil arthropods in disturbed and undisturbed ecosystem in Western Amhara, Ethiopia. International Journal of Tropical Insect Science, 42(1), 767–781.
Wei, C.-Y., Wang, J.-K., Shih, H.-C., Wang, H.-C., & Kuo, C.-C. (2020). Invasive plants facilitated by socioeconomic change harbor vectors of scrub typhus and spotted fever. PLoS Neglected Tropical Diseases, 14(1), e0007519.
Wood, C. L., & Lafferty, K. D. (2013). Biodiversity and disease: A synthesis of ecological perspectives on Lyme disease transmission. Trends in Ecology & Evolution, 28(4), 239–247.
Wulandhari, S. A., Paladsing, Y., Saesim, W., Charoennitiwat, V., Sonthayanon, P., Kumlert, R., Morand, S., Sumruayphol, S., & Chaisiri, K. (2021). High prevalence and low diversity of chigger infestation in small mammals found in Bangkok Metropolitan parks. Medical and Veterinary Entomology, 35(4), 534–546.
Yang, H.-H., Huang, I.-T., Lin, C.-H., Chen, T.-Y., & Chen, L.-K. (2012). New genotypes of Orientia tsutsugamushi isolated from humans in eastern Taiwan. PLoS One, 7(10), e46997.
Ziegler, M. (2016). Landscapes of disease. Landscapes, 17(2), 99–107.