研究生: |
徐仲恩 Hsu, Chung-En |
---|---|
論文名稱: |
利用六甲基二矽硫烷幫助CsPbI3鈣鈦礦奈米立方晶相穩定之研究 Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using small molecules bis(trimethylsilyl)sulfide |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 鈣鈦礦奈米晶體 、立方晶相 、六甲基二矽硫烷 |
英文關鍵詞: | Perovskite nanocrystals, Cubic phase, Hexamethyl-disilane |
DOI URL: | https://doi.org/10.6345/NTNU202202824 |
論文種類: | 學術論文 |
相關次數: | 點閱:72 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦奈米晶體因其在可見光的高吸收係數、雙極性、直接能隙等光學性質,在太陽能電池與發光二極體上都有良好的應用,所以成為備受矚目的發光材料之一,但因為其在大氣下的低穩定性,造成其實際應用上的困難。而此篇研究主要針對此材料的穩定性做探討,此類材料在大氣下因水氧的侵入使其晶體崩解,然而其本身的高光學活性晶相在室溫下,也會自發的轉換成非光學活性的晶相,使其喪失應用的價值。而本實驗利用配體的置換,將原本以油酸為主要配體的鈣鈦礦奈米晶體,置換成小分子的六甲基二矽硫烷,改善了其在大氣下的穩定度,可以從可見光吸收光譜、X光繞射光譜、穿透式電子顯微鏡、螢光放光光譜等,發現到以六甲基二矽硫烷為配體的鈣鈦礦奈米晶體其光學性質維持的時間都較以油酸為配體的鈣鈦礦奈米晶體長,表示此法增強了鈣鈦礦奈米晶體在大氣下具光學活性之立方晶相的穩定性,以利後續之應用
Perovskite nanocrystals have a good application in solar cells and light-emitting diodes because of their optical properties such as high absorption coefficient, bipolar, direct energy gap and so on, so they become one of the most popular luminescent materials , But because of its low stability in the atmosphere, resulting in its practical application of the difficulties. This study is mainly for the stability of this material. This kind of material in the atmosphere due to the intrusion of water and oxygen to its crystal disintegration, but its own high optical activity crystal phase at room temperature also, will spontaneous conversion Non-optically active crystal phase, so that it lost the value of application. In this study, the use of ligand replacement, the original oleic acid as the main ligand of the perovskite nanocrystals, replaced by small molecules of hexamethyldisilane, improved its stability in the atmosphere, from Visible light absorption spectroscopy, X-ray diffraction spectroscopy, transmission electron microscopy, fluorescence emission spectroscopy, etc. The observed optical properties of perovskite nanocrystals with hexamethyldisilane as ligand Which is more stable than the perovskite nanocrystals with oleic acid as ligand, which indicates that this method enhances the stability of the optically active cubic crystal phase of perovskite nanocrystals in the atmosphere to optimize its application.
(1) Min-Ho KimMartin F. Appl. Phys. Lett 2007.
(2) 拓墣產業研究所整理,材料奈米技術專刊 2002。
(3) 項燕君、林宗宏、黃銘峰、張煥宗,科學月刊 2011。
(4) K. Oura. Surface Science 2003.
(5) Lise-Marie Lacroix.; Fabien Delpech.The Royal Society 2013.
(6) Marc Achermann, Andrew P.; Bartko, Jennifer A. Nature Physics 2006.
(7) Tzung-Luen Li.; Yuh-Lang Lee. Energy & Environmental Science 2012.
(8) Palache, H.;Berman, and C.Frondel The System of Mineralogy 1944.
(9) Buttner, R. H. M., E.N. Acta Crystallographica 1992, Vol. B 48, p. 644.
(10) Pfaff, G. Chemistry of Materials 1994, 6, 58.
(11) Dunn, B.; Zink, J. I. Accounts of Chemical Research 2007, 40, 729.
(12) Sibum, H.; Güther, V.; Roidl, O.; Habashi, F.; Wolf, H. U. In Ullmann's Encyclopedia of Industrial Chemistry 2000.
(13) Voigt, W. Lehrbuch der kristallphysik 1910.
(14) Lines, M. E.; Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials 1977.
(15) Keigo, S.; Kazunori, K. Japanese Journal of Applied Physics 2005, 44, 2081.
(16) Selvaraj, M.; Venkatachalapathy, V.; Mayandi, J.; Karazhanov, S.; Pearce, J. M. AIP Advances 2015, 5, 117119.
(17) Housecroft, C. E.; Sharpe, A. G. Inorganic Chemistry 2005.
(18) Greenwood, N. N.; Earnshaw, A. Chemistry of the elements 2010.
(19) Sun, Y.-K.; Oh, I.-H. Industrial & Engineering Chemistry Research 1996, 35, 4296.
(20) Riddle, R.; Kuntz, M.; Muller, B.; Raulin, D.; Feldmann-Schlobohm, G.1998.
(21) London, F. Superfluids: Macroscopic theory of superfluid helium; Wiley, 1954.
(22) Kittel, C. Introduction to solid state physics; Wiley: Hoboken, NJ, 2005.
(23) Snaith, H.; Lee, M.; MURAKAMI, T.; Google Patents: 2016.
(24) Leguy, A. M. A.; Azarhoosh, P.; Alonso, M. I.; Campoy-Quiles, M.; Weber, O. J.; Yao, J.; Bryant, D.; Weller, M. T.; Nelson, J.; Walsh, A.; van Schilfgaarde, M.; Barnes, P. R. F. Nanoscale 2016, 8, 6317.
(25) Comin, R.; Walters, G.; Thibau, E. S.; Voznyy, O.; Lu, Z.-H.; Sargent, E. H. Journal of Materials Chemistry C 2015, 3, 8839.
(26) Motta, C.; El-Mellouhi, F.; Kais, S.; Tabet, N.; Alharbi, F.; Sanvito, S. Nature Communications 2015, 6, 7026.
(27) Li, F.; Ma, C.; Wang, H.; Hu, W.; Yu, W.; Sheikh, A. D.; Wu, T. Nature Communications 2015, 6, 8238.
(28) Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Nat Mater 2014, 13, 476.
(29) Kim, S.; Bae, S.; Lee, S.-W.; Cho, K.; Lee, K. D.; Kim, H.; Park, S.; Kwon, G.; Ahn, S.-W.; Lee, H.-M.; Kang, Y.; Lee, H.-S.; Kim, D. Scientific Reports 2017, 7, 1200.
(30) Leijtens, T.; Eperon, G. E.; Noel, N. K.; Habisreutinger, S. N.; Petrozza, A.; Snaith, H. J. Advanced Energy Materials 2015, 5, n/a.
(31) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Journal of the American Chemical Society 2009, 131, 6050.
(32) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G. Scientific Reports 2012, 2, 591.
(33) Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Gratzel, M. Energy & Environmental Science 2016, 9, 1989.
(34) Zhang, Q.; Ha, S. T.; Liu, X.; Sum, T. C.; Xiong, Q. Nano Letters 2014, 14, 5995.
(35) Wang, N.; Cheng, L.; Ge, R.; Zhang, S.; Miao, Y.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R.; Wei, Y.; Guo, Q.; Ke, Y.; Yu, M.; Jin, Y.; Liu, Y.; Ding, Q.; Di, D.; Yang, L.; Xing, G.; Tian, H.; Jin, C.; Gao, F.; Friend, R. H.; Wang, J.; Huang, W. Nat Photon 2016, 10, 699.
(36) Perumal, A.; Shendre, S.; Li, M.; Tay, Y. K. E.; Sharma, V. K.; Chen, S.; Wei, Z.; Liu, Q.; Gao, Y.; Buenconsejo, P. J. S.; Tan, S. T.; Gan, C. L.; Xiong, Q.; Sum, T. C.; Demir, H. V. Scientific Reports 2016, 6, 36733.
(37) Shamsi, J. ACS Energy Letters 2016.
(38) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nano Letters 2015, 15, 3692.
(39) Wang, C.; Chesman, A. S. R.; Jasieniak, J. J. Chemical Communications 2017, 53, 232.