研究生: |
李紘維 Li, Hung-Wei |
---|---|
論文名稱: |
利用社會網路分析和類神經網路法探討自動駕駛汽車感知專利技術角色定位與策略發展 Using social network analysis and neural network methods to explore the role positioning and strategic development of patent technology in autonomous vehicle perception |
指導教授: |
陳麗妃
Chen, Li-Fei |
口試委員: |
蕭宇翔
Hsiao, Yu-Hsiang 陳穆臻 Chen, Mu-Chen 陳麗妃 Chen, Li-Fei |
口試日期: | 2024/01/11 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 專利引證 、社會網路分析 、類神經網路 、自動駕駛汽車 、感知技術 、角色定位 |
英文關鍵詞: | Patent Citation, Social Network Analysis, Artificial Neural Network, Autonomous Vehicles, Perception Technology, Role Positioning |
DOI URL: | http://doi.org/10.6345/NTNU202400147 |
論文種類: | 學術論文 |
相關次數: | 點閱:82 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技日益滲透至日常生活,大型城市正面臨日益嚴峻的交通流動性挑戰。自動駕駛汽車產業被視為解決這類問題的一個有前景的領域,但目前車輛相關技術尚還未達到理想中的完全自動化水平,而實現完全自動化的關鍵在於自動駕駛汽車感知技術的發展,因此感知技術的企業於產業中的發展將使社會逐步邁向一個更加智能、高效和安全的交通未來,而企業為制定相應的發戰策略,其必須理解市場中各家企業專利技術能力、專利角色定位與未來發展趨勢,透過以上指標制定適切的發展策略。
本研究主要的目的是提供自動駕駛汽車感知技術相關企業未來發展建議。首先,本研究利用社會網路分析針對 MTrends 專利資料庫中的自動駕駛汽車感知技術專利進行中心性分析,基於社會網路分析計算各家企業的中心性數值分析結果,提出評估企業專利技術能力的三個關鍵指標包含「專利技術影響力」、「專利技術市場模仿能力」和「獨立技術開發能力」,應用企業專利技術能力指標定位企業的專利技術角色;接著,本研究透過類神經網絡分析各企業過往的專利公開件數,建立專利技術生命週期並分析其專利技術的發展趨勢,從而發現該專利的技術生命週期仍表現出持續成長的趨勢
最後,根據本研究的專利技術角色定位與專利技術生命週期為成長趨勢的分析結果,為企業和技術開發人員提供企業發展策略建議,使企業和投資者更準確地理解企業當前狀況,並深化對產業結構和競爭動態的認識,從而促進更有效的未來規劃。
As technology increasingly permeates daily life, large cities are facing more severe challenges in traffic mobility. The autonomous driving car industry is seen as a promising field to address these issues. However, current vehicle-related technologies have not yet achieved the ideal level of complete automation. The key to achieving full automation lies in the development of autonomous driving car perception technologies. Thus, the advancement of perception technology enterprises in the industry will gradually lead society towards a more intelligent, efficient, and safer transportation future. To formulate appropriate strategic plans, enterprises must understand the patent technology capabilities, patent role positioning, and future development trends of various companies in the market, and develop suitable strategies based on these indicators.
The main purpose of this study is to provide suggestions for the future development of enterprises related to autonomous driving car perception technologies. Firstly, this study uses social network analysis to perform centrality analysis on patents of autonomous driving car perception technologies in the MTrends patent database. Based on the centrality values calculated through social network analysis, the study proposes three key indicators for evaluating corporate patent technology capabilities, which include ' influence of patented technology', 'patent technology market imitation ability', and 'independent technology development capability'. These indicators are used to position the patent technology roles of enterprises. Next, the study analyzes the number of patent disclosures of each company over time using neural network analysis, establishing the patent technology lifecycle and analyzing the development trends of its patent technology. This reveals that the lifecycle of this patent technology still shows a continuing growth trend.
Finally, based on the analysis results of patent technology role positioning and the growth trend of the patent technology life cycle from this study, suggestions for corporate development strategies are provided for businesses and technology developers. These suggestions help enterprises and investors to more accurately understand the current status of their businesses and deepen their understanding of industry structures and competitive dynamics, thereby promoting more effective future planning.
王進德、蕭大全(2005)。類神經網路與模糊控制理論入門。新北市:全華圖書。
伊居才(2002)。以自迴歸式建模倒傳遞網路為基礎之即時用電需量預測研究(未出版博士論文)。國立高雄第一科技大學,高雄市。
李禹奇(2011)。污水處理廠進流水動態特性模擬:時間序列法、傅立葉級數法及類神經網路法之比較研究(未出版博士論文)。台灣首府大學休閒設施規劃與管理學系,臺北市
阮明淑、梁峻齊(2009)。專利指標發展研究。圖書館學與資訊科學,35 (2)。
卓立庭(2019)。基於專利引證分析探討自動駕駛技術之發展(未出版博士論文)。國立臺灣科技大學資訊管理系,臺北市。
張家豪(2021)。應用 LSTM 與 MLP 神經網路模擬結構動力反應及損傷評估(未出版碩士論文)。國立陽明交通大學,新竹市。
張斐章、張麗秋(2005)。類神經網路。東華書局,臺北市。
張登凱(2021)。透過專利數據進行技術預測:探討自駕車技術之擴散(未出版碩士論文)。國立政治大學科技管理與智慧財產系,臺北市。
陳宥杉、李景如、王翠、林書賢、陳銘薰、陳永承、楊豫晉(2019)。專利數,自我專利引證數與相對專利定位對公司獲利性影響之研究-專利分析之觀點。商管科技季刊,20(2),181-204。
陳樹榮、賴奎魁(2012)。以自我技術網絡觀點辨識商品化最佳合作夥伴。管理與系統,19(4),589-623。
黃孝怡(2018)。略性專利布局:從企業專利策略到專利布局。智慧財產權月刊,236,5-29。
葉怡成(1993)。類神經網路模式應用與實作。儒林圖書,臺北市。
劉憶文(2014)。以社群網路分析方法探討專利引證關係趨勢-以智慧型手機為例(未出版碩士論文)。元智大學工業工程與管理學系,桃園市。
魏財勇(2021)。使用專利引證網路探討車輛導航公司的技術位置與角色(未出版博士論文)。朝陽科技大學企業管理系台灣產業策略發展博士班,台中市。
魏財勇、陳素芬、謝逸文、賴奎魁、蘇芳霈(2021)。以專利引證網路分析公司位置與角色-以導引系統為例。商管科技季刊,22(1),101-131。
Agha, M, A, K, M., Ghesmati, R., & Pishvaee, M. S. (2021). A robust optimization model for influence maximization in social networks with heterogeneous nodes. Computational Social Networks, 8(1), 1-17.
Archibugi, D. (1992). Patenting as an indicator of technological innovation: a review. Science and Public Policy, 19(6), 357-368.
Ardito, L., D'Adda, D., & Petruzzelli, A. M. (2018). Mapping innovation dynamics in the Internet of Things domain: Evidence from patent analysis. Technological Forecasting and Social Change, 136, 317-330.
Bimbraw, K. (2015, July). Autonomous cars: Past, present and future a review of the developments in the last century, the present scenario and the expected future of autonomous vehicle technology. In 2015 12th International Conference on Informatics in Control, Automation and Robotics, 191-198.
Campbell, M., Egerstedt, M., How, J. P., & Murray, R. M. (2010). Autonomous driving in urban environments: approaches, lessons and challenges. Philosophical Transactions of the Royal Society A: Mathematical., Physical and Engineering Sciences, 368(1928), 4649-4672.
Campbell, S., O'Mahony, N., Krpalcova, L., Riordan, D., Walsh, J., Murphy, A., & Ryan, C. (2018, June). Sensor technology in autonomous vehicles: A review. In 2018 29th Irish Signals and Systems Conference, 1-4.
Chang, H. J., Chen, H. C., Chang, Y. H., Kumar, V., Lin, C. Y., & Lee, Y. R. (2020). A Structured Approach to Locate the Technological Position by Technology Knowledge Redundancy-Patent Citation Network Perspective. International Journal of Information Management Science, 31, 55-78.
Chaturvedi, D. K. (2008). Artificial neural network and supervised learning. Soft Computing: Techniques and its Applications in Electrical Engineering, 23-50.
Chehri, A., & Mouftah, H. T. (2019). Autonomous vehicles in the sustainable cities, the beginning of a green adventure. Sustainable Cities and Society, 51, 101751.
Chi, Y. C., & Wang, H. C. (2022). Establish a patent risk prediction model for emerging technologies using deep learning and data augmentation. Advanced Engineering Informatics, 52, 101509.
Cho, R. L., Liu, J. S., & Ho, M. H. C. (2019). Autonomous vehicle technology development: A patent survey based on main path analysis. In 2019 Portland International Conference on Management of Engineering and Technology, 1-9.
Chung, P., & Sohn, S. Y. (2020). Early detection of valuable patents using a deep learning model: Case of semiconductor industry. Technological Forecasting and Social Change, 158, 120146.
De Choudhury, M., Mason, W. A., Hofman, J. M., & Watts, D. J. (2010, April). Inferring relevant social networks from interpersonal communication. In Proceedings of the 19th International Conference on World Wide Web, 301-310.
Elmenreich, W. (2002). An introduction to sensor fusion. Vienna University of Technology, Austria, 502, 1-28.
Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small Business Economics, 9(4), 361-381.
Ernst, H. (1998). Patent portfolios for strategic R&D planning. Journal of Engineering and Technology Management, 15(4), 279-308.
Faria, R., Brito, L., Baras, K., & Silva, J. (2017, July). Smart mobility: A survey. In 2017 International Conference on Internet of Things for The Global Community, 1-8.
Freeman, L. C., Roeder, D., & Mulholland, R. R. (1979). Centrality in social networks: II. Experimental results. Social Networks, 2(2), 119-141.
Gazni, A. (2020). The growing number of patent citations to scientific papers: Changes in the world, nations, and fields. Technology in Society, 62, 101276.
Giachetti, C., & Pira, S. L. (2022). Catching up with the market leader: Does it pay to rapidly imitate its innovations?. Research Policy, 51(5), 104505.
Gompertz, B. (1825). XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philosophical transactions of the Royal Society of London, (115), 513-583.
Guan, J., & Chen, Z. (2012). Patent collaboration and international knowledge flow. Information Processing & Management, 48(1), 170-181.
Haupt, R., Kloyer, M., & Lange, M. (2007). Patent indicators for the technology life cycle development. Research Policy, 36(3), 387-398.
Holgersson, M., & Granstrand, O. (2017). Patenting motives, technology strategies, and open innovation. Management Decision.
Ji, Y., Zhu, X., Zhao, T., Wu, L., & Sun, M. (2020). Revealing technology innovation, competition and cooperation of self-driving vehicles from patent perspective. IEEE Access, 8, 221191-221202.
Knoke, D., & Kuklinski, J. H. (1991). Network analysis: basic concepts. Markets, Hierarchies And Networks: The Coordination of Social Life, 173-82.
Kosuru, V. S. R., & Venkitaraman, A. K. (2023). Advancements and challenges in achieving fully autonomous self-driving vehicles. World Journal of Advanced Research and Reviews, 18(1), 161-167.
Kravtsov, K., Fok, M. P., Rosenbluth, D., & Prucnal, P. R. (2011). Ultrafast all-optical implementation of a leaky integrate-and-fire neuron. Optics Express, 19(3), 2133-2147.
Kyriakidis, M., de Winter, J. C., Stanton, N., Bellet, T., van Arem, B., Brookhuis, K., & Happee, R. (2019). A human factors perspective on automated driving. Theoretical Issues in Ergonomics Science, 20(3), 223-249.
Lai, K. K., Chang, Y. H., Kumar, V., Wei, T. Y., Su, F. P., & Mittal, A. (2023). The position and role on patent citation network of the parking lot guidance system. Technology Analysis & Strategic Management, 35(9), 1161-1177.
Lee, C. W., Tao, F., Ma, Y. Y., & Lin, H. L. (2022). Development of Patent Technology Prediction Model Based on Machine Learning. Axioms, 11(6), 253.
Lee, C., Kwon, O., Kim, M., & Kwon, D. (2018). Early identification of emerging technologies: A machine learning approach using multiple patent indicators. Technological Forecasting and Social Change, 127, 291-303.
Lee, M. (2020). An analysis of the effects of artificial intelligence on electric vehicle technology innovation using patent data. World Patent Information, 63, 102002.
Lee, P. C., & Su, H. N. (2010). Investigating the structure of regional innovation system research through keyword co-occurrence and social network analysis. Innovation, 12(1), 26-40.
Li, X., & Yuan, X. (2022). Tracing the technology transfer of battery electric vehicles in China: A patent citation organization network analysis. Energy, 239, 122265.
Liu, W., Tao, Y., Yang, Z., & Bi, K. (2019). Exploring and visualizing the patent collaboration network: A case study of smart grid field in China. Sustainability, 11(2), 465.
Malthus, T. R. (1986). An essay on the principle of population (1798). The Works of Thomas Robert Malthus, London, Pickering & Chatto Publishers, 1, 1-139.
Morris, E. A. (2015). Should we all just stay home? Travel, out-of-home activities, and life satisfaction. Transportation Research Part A: Policy and Practice, 78, 519-536.
Paiva, S., Ahad, M. A., Tripathi, G., Feroz, N., & Casalino, G. (2021). Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges. Sensors, 21(6), 2143.
Pangbourne, K., Stead, D., Mladenović, M., & Milakis, D. (2018). The case of mobility as a service: A critical reflection on challenges for urban transport and mobility governance. In Governance of The Smart Mobility Transition, 33-48. Emerald Publishing Limited.
Park, S., Kim, J., Lee, H., Jang, D., & Jun, S. (2016). Methodology of technological evolution for three-dimensional printing. Industrial Management & Data Systems, 116(1), 122-146.
Pearl, R. (1924). The curve of population growth. Proceedings of the American Philosophical Society, 63(1), 10-17.
Ramadhan, M. H., Malik, V. I., & Sjafrizal, T. (2018). Artificial neural network approach for technology life cycle construction on patent data. In 2018 5th International Conference on Industrial Engineering and Applications, 499-503.
Rjab, A. B., & Mellouli, S. (2021). Smart cities in the era of artificial intelligence and internet of things: promises and challenges. Smart cities and smart governance: towards the 22nd century sustainable city, 259-288.
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386.
Sae International. (2018). Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. SAE international, 4970(724), 1-5.
Scott, S. G., & Lane, V. R. (2000). A stakeholder approach to organizational identity. Academy of Management Review, 25(1), 43-62.
Sell, R., Rassõlkin, A., Wang, R., & Otto, T. (2019). Integration of autonomous vehicles and Industry 4.0. Proceedings of The Estonian Academy of Sciences, 68(4), 389-394.
Sharma, P., & Tripathi, R. C. (2017). Patent citation: A technique for measuring the knowledge flow of information and innovation. World Patent Information, 51, 31-42.
Sharma, P., Tripathi, R., & Tripathi, R. C. (2016). Patent citation network analysis for measuring the ICT patent progress in India. In 2016 International Conference on Computer Communication and Informatics, 1-4.
Sheen, A. (2014). The real product market impact of mergers. The Journal of Finance, 69(6), 2651-2688.
Shiller, R. J., Campbell, J. Y., Schoenholtz, K. L., & Weiss, L. (1983). Forward rates and future policy: Interpreting the term structure of interest rates. Brookings Papers on Economic Activity, 1983(1), 173-223.
Sternitzke, C., Bartkowski, A., & Schramm, R. (2008). Visualizing patent statistics by means of social network analysis tools. World Patent Information, 30(2), 115-131.
Sun, H., Geng, Y., Hu, L., Shi, L., & Xu, T. (2018). Measuring China's new energy vehicle patents: A social network analysis approach. Energy, 153, 685-693.
Taylor, M., & Taylor, A. (2012). The technology life cycle: Conceptualization and managerial implications. International Journal of Production Economics, 140(1), 541-553.
Taylor, M., & Taylor, A. (2012). The technology life cycle: Conceptualization and managerial implications. International Journal of Production Economics, 140(1), 541-553.
Tseng, F. M., Hsieh, C. H., Peng, Y. N., & Chu, Y. W. (2011). Using patent data to analyze trends and the technological strategies of the amorphous silicon thin-film solar cell industry. Technological Forecasting and Social Change, 78(2), 332-345.
United Nations. Transforming Our World: The 2030 Agenda for ustainable Development. 2020. Retrieved from: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 1 November 2022).
Unsal, E., & Cetindamar, D. (2015). Technology management capability: Definition and its measurement. European International Journal Of Science and Technology, 4(2), 181-196.
Van Brummelen, J., O’Brien, M., Gruyer, D., & Najjaran, H. (2018). Autonomous vehicle perception: The technology of today and tomorrow. Transportation research part C: emerging technologies, 89, 384-406.
Walker, G., Kogut, B., & Shan, W. (1997). Social capital, structural holes and the formation of an industry network. Organization Science, 8(2), 109-125.
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications.
Wellman, B., & Berkowitz, S. D. (Eds.). (1988). Social structures: A network approach (Vol. 15). CUP Archive.
Yeong, D. J., Velasco-Hernandez, G., Barry, J., & Walsh, J. (2021). Sensor and sensor fusion technology in autonomous vehicles: A review. Sensors, 21(6), 2140.
Zhang, S., Yuan, C. C., Chang, K. C., & Ken, Y. (2012). Exploring the nonlinear effects of patent H index, patent citations, and essential technological strength on corporate performance by using artificial neural network. Journal of Informetrics, 6(4), 485-495.