研究生: |
李秉宏 Lee, Ping-Hung |
---|---|
論文名稱: |
少量感測元件不同擺放位置對扁平足步態動力學參數量測準確度之影響 Accuracy of measuring flatfoot gait kinetic parameters of different pressure sensor positions |
指導教授: |
相子元
Shiang, Tzyy-Yuang |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 鞋內足壓系統 、垂直地面反作用力 、足底壓力中心 |
英文關鍵詞: | plantar pressure system, vertical ground reaction force, center of pressure |
DOI URL: | http://doi.org/10.6345/NTNU202000895 |
論文種類: | 學術論文 |
相關次數: | 點閱:184 下載:23 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究欲探討少量感測元件不同擺放位置對於量測扁平足之足底壓力中心 (CoP) 以及垂直地面反作用力 (vGRF) 準確度之相關性程度為何。招募12名扁平足的受試者進行指定速度之慢走、快走、慢跑及快跑。以 Pedar-X system 紀錄試驗中穩定走跑的足底壓力值。以11個壓力感測元件組成的4種擺放位置 (配置一為過去文獻配置、配置二為平均陣列配置、配置三為扁平足CoP軌跡上、配置四為扁平足CoP軌跡兩側)。利用皮爾森相關係數 (PCC) 及方均根誤差 (RMSE) 比較4種擺放位置與黃金標準之CoP軌跡及vGRF的相關性。結果顯示各配置所量測之CoP軌跡與黃金標準相關性皆達顯著且高度相關,感測元件以較平均且範圍較大的擺放位置所預測CoP之RMSE與黃金標準相比誤差較低;各配置所量測之vGRF與黃金標準相關性也皆達顯著且高度相關。本研究結果可以提供鞋墊式足壓系統開發相關之應用,透過擺放位置的選擇即可準確的量測到扁平足CoP及vGRF這兩項步態動力學參數。
The purpose of this study is to define the accuracy of how few pressure sensors’ position effects the center of pressure (CoP) and vertical ground reaction force (vGRF) for a flat foot. Twelve males with flat foot walk and run at selected speed. Settled with eleven pressure sensors, the pressure value of stable walking and running test is recorded by Pedar-X system four positions (the first position is referring to the past literature ; the second position is average array; the third position is flat-footed CoP trajectory and the fourth position is on both sides of the flat-footed CoP trajectory), which are compared with golden standard for CoP trajectories and vGRF by Pearson’s correlation coefficient (PCC) and root mean square error (RMSE). According to the results, the CoP trajectory has the higher correlation at the fourth position, the RMSE of CoP has the lower deviation at the second position, and the vGRF has the higher correlation at the first and second position. The result of this study can provide applications related to the development of insole plantar pressure system. The flatfoot gait kinetic parameters of CoP and vGRF can be accurately measured through the choice of sensor position.
謝長欣. (2018)。壓力感測元件數量對步態動力學參數預測準確度之影響。國立臺灣師範大學運動競技學系碩士論文,台北市。
Bamberg, S. J. M., Benbasat, A. Y., Scarborough, D. M., Krebs, D. E., & Paradiso, J. A. (2008). Gait analysis using a shoe-integrated wireless sensor system. IEEE Transactions on Information Technology in Biomedicine, 12(4), 413-423.
Barnett, S., Cunningham, J. L., & West, S. (2001). A comparison of vertical force and temporal parameters produced by an in-shoe pressure measuring system and a force platform. Clinical Biomechanics, 16(4), 353-357.
Buldt, A. K., Forghany, S., Landorf, K. B., Levinger, P., Murley, G. S., & Menz, H. B. (2018). Foot posture is associated with plantar pressure during gait: A comparison of normal, planus and cavus feet. Gait & Posture, 62, 235-240.
Buldt, A. K., Forghany, S., Landorf, K. B., Murley, G. S., Levinger, P., & Menz, H. B. (2018). Centre of pressure characteristics in normal, planus and cavus feet. Journal of Foot and Ankle Research, 11(1), 3.
Cavanagh, P. R., & Rodgers, M. M. (1987). The arch index: a useful measure from footprints. Journal of Biomechanics, 20(5), 547-551.
Chuckpaiwong, B., Nunley, J. A., Mall, N. A., & Queen, R. M. (2008). The effect of foot type on in-shoe plantar pressure during walking and running. Gait & Posture, 28(3), 405-411.
Claverie, L., Ille, A., & Moretto, P. (2016). Discrete sensors distribution for accurate plantar pressure analyses. Medical Engineering & Physics, 38(12), 1489-1494.
Debbi, E. M., Wolf, A., Goryachev, Y., Yizhar, Z., Luger, E., Debi, R., & Haim, A. (2012). In-shoe center of pressure: Indirect force plate vs. direct insole measurement. The Foot, 22(4), 269-275.
Evans, A. M., Copper, A. W., Scharfbillig, R. W., Scutter, S. D., & Williams, M. T. (2003). Reliability of the foot posture index and traditional measures of foot position. Journal of the American Podiatric Medical Association, 93(3), 203-213.
Fernández-Seguín, L. M., Mancha, J. A. D., Rodríguez, R. S., Martínez, E. E., Martín, B. G., & Ortega, J. R. (2014). Comparison of plantar pressures and contact area between normal and cavus foot. Gait & Posture, 39(2), 789-792.
Haim, A., Rozen, N., & Wolf, A. J. J. o. b. (2010). The influence of sagittal center of pressure offset on gait kinematics and kinetics. Journal of Biomechanics, 43(5), 969-977.
Han, J. T., Koo, H. M., Jung, J. M., Kim, Y. J., & Lee, J. H. (2011). Differences in plantar foot pressure and COP between flat and normal feet during walking. Journal of Physical Therapy Science, 23(4), 683-685.
Hillstrom, H. J., Song, J., Kraszewski, A. P., Hafer, J. F., Mootanah, R., Dufour, A. B., . . . & Deland III, J. T. (2013). Foot type biomechanics part 1: structure and function of the asymptomatic foot. Gait & Posture, 37(3), 445-451.
Howell, A. M., Kobayashi, T., Hayes, H. A., Foreman, K. B., & Bamberg, S. J. M. (2013). Kinetic gait analysis using a low-cost insole. IEEE Transactions on Biomedical Engineering, 60(12), 3284-3290.
Imhauser, C. W., Siegler, S., Abidi, N. A., & Frankel, D. Z. (2004). The effect of posterior tibialis tendon dysfunction on the plantar pressure characteristics and the kinematics of the arch and the hindfoot. Clinical Biomechanics, 19(2), 161-169.
Jonely, H., Brismée, J.-M., Sizer Jr, P. S., & James, C. R. (2011). Relationships between clinical measures of static foot posture and plantar pressure during static standing and walking. Clinical Biomechanics, 26(8), 873-879.
Kaufman, K. R., Brodine, S. K., Shaffer, R. A., Johnson, C. W., & Cullison, T. R. (1999). The effect of foot structure and range of motion on musculoskeletal overuse injuries. The American Journal of Sports Medicine, 27(5), 585-593. 0
Ledoux, W. R., & Hillstrom, H. J. (2002). The distributed plantar vertical force of neutrally aligned and pes planus feet. Gait & Posture, 15(1), 1-9.
Liang, T. C., Lin, J.-J., & Guo, L.Y. (2016). Plantar pressure detection with fiber Bragg gratings sensing system. Sensors, 16(10), 1766.
Macleod, C. A., Conway, B. A., Allan, D. B., & Galen, S. S. physics. (2014). Development and validation of a low-cost, portable and wireless gait assessment tool. Medical Engineering & Physics, 36(4), 541-546.
McKay, M. J., Baldwin, J. N., Ferreira, P., Simic, M., Vanicek, N., Wojciechowski, E., . . . & 1000 Norms Project Consortium. (2017). Spatiotemporal and plantar pressure patterns of 1000 healthy individuals aged 3–101 years. Gait & Posture, 58, 78-87.
Menz, H. B., Munteanu, S. E., Zammit, G. V., & Landorf, K. B. (2010). Foot structure and function in older people with radiographic osteoarthritis of the medial midfoot. Osteoarthritis and Cartilage, 18(3), 317-322.
Mootanah, R., Song, J., Lenhoff, M. W., Hafer, J. F., Backus, S. I., Gagnon, D., . . . & Hillstrom, H. J. (2013). Foot Type Biomechanics Part 2: Are structure and anthropometrics related to function? Gait & Posture, 37(3), 452-456.
Park, E. S., Kim, H. W., Park, C. I., Rha, D.-w., & Park, C. W. (2006). Dynamic foot pressure measurements for assessing foot deformity in persons with spastic cerebral palsy. Archives of Physical Medicine and Rehabilitation, 87(5), 703-709.
Price, C., Parker, D., & Nester, C. (2016). Validity and repeatability of three in-shoe pressure measurement systems. Gait & Posture, 46, 69-74.
Rao, S., Song, J., Kraszewski, A., Backus, S., Ellis, S. J., Md, J. T. D., . . . & Hillstrom, H. J. (2011). The effect of foot structure on 1st metatarsophalangeal joint flexibility and hallucal loading. Gait & Posture, 34(1), 131-137.
Redmond, A. C., Crane, Y. Z., & Menz, H. B. (2008). Normative values for the foot posture index. Journal of Foot and Ankle research, 1(1), 6.
Sanjari, M. A., Boozari, S., Jamshidi, A. A., & Nikmaram, M. R. (2016). Fatigue effect on linear center of pressure measures during gait in people with flat feet. Asian Journal of Sports Medicine, 7(4).
Shu, L., Hua, T., Wang, Y., Li, Q., Feng, D. D., & Tao, X. (2010). In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Transactions on Information Technology in Biomedicine, 14(3), 767-775.
Soltanzadeh, Z., Najar, S. S., Haghpanahi, M., & Mohajeri-Tehrani, M. R. (2017). Plantar static pressure distribution in Normal feet using cotton socks with different structures. Journal of the American Podiatric Medical Association, 107(1), 30-38.
Song, J. I. N. S. U. P., Hillstrom, H. J., Secord, D., & Levitt, J. (1996). Foot type biomechanics. comparison of planus and rectus foot types. Journal of the American Podiatric Medical Association, 86(1), 16-23.
Sullivan, J., Burns, J., Adams, R., Pappas, E., & Crosbie, J. (2015). Plantar heel pain and foot loading during normal walking. Gait & Posture, 41(2), 688-693.
Teyhen, D. S., Stoltenberg, B. E., Collinsworth, K. M., Giesel, C. L., Williams, D. G., Kardouni, C. H., . . . McPoil, T. (2009). Dynamic plantar pressure parameters associated with static arch height index during gait. Clinical Biomechanics, 24(4), 391-396.
Wong, L., Hunt, A., Burns, J., & Crosbie, J. (2008). Effect of foot morphology on center-of-pressure excursion during barefoot walking. Journal of the American Podiatric Medical Association, 98(2), 112-117.
Zhang, H., Zanotto, D., & Agrawal, S. K. (2017). Estimating CoP trajectories and kinematic gait parameters in walking and running using instrumented insoles. IEEE Robotics and Automation Letter s, 2(4), 2159-2165.