簡易檢索 / 詳目顯示

研究生: 吳啟濠
Wu, Ci-Hao
論文名稱: 適用於菲涅爾轉換之快速計算及低面積複雜度硬體電路架構設計
An FPGA Architecture of High Speed and Low Area Costs for Fresnel Transform
指導教授: 黃文吉
Hwang, Wen-Jyi
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 51
中文關鍵詞: FPGA自動對焦全像重建餘弦轉換
DOI URL: https://doi.org/10.6345/NTNU202202034
論文種類: 學術論文
相關次數: 點閱:83下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在於FPGA(Field Programmable Gate Array)平台上實作菲涅爾轉換之硬體架構實現。
    本系統透過增加硬體電路與SDRAM(Synchronous Dynamic Random Access Memory)之間存取資料的頻寬,以達到低面積及高速運算之目的。一般的硬體電路在做龐大的資料運算時,都會耗費相當多的時間與主記憶體做資料的存取,而以往的菲涅爾轉換之硬體電路並沒有充分的使用存取記憶體的資料頻寬,使得電路運算時間增加,而降低電路的效能。
    本論文之硬體架構是使用主動型態的記憶體讀寫電路,該電路有效的利用SDRAM所提供的記憶體的資料頻寬,來增進存取記憶體的效能,降低整體運算過程中所耗費掉的時間,達到高速運算之目的。由於電路運算所需要的資料都存放於SDRAM之中,而不需要使用到On-Chip RAM,因此電路整體面積較小,達到低面積之目的。

    摘要 I 誌謝 II 目錄 III 附表目錄 IV 附圖目錄 V 第一章 緒論 1 第一節 研究背景 1 第二節 全文架構 5 第二章 基礎理論及技術背景介紹 6 第一節 菲涅爾轉換6 第二節 記憶體存取技術 10 第三章 系統架構 15 第一節 整體系統架構 15 第二節 菲涅爾轉換電路運作流程 18 第一項 第一階段運算 18 第二項 第二階段運算 30 第四章 實驗數據與效能比較 39 第一節 開發平台與實驗環境設定 39 第二節 實驗數據呈現與討論 41 第五章 結論 49 參考文獻 50

    [1]D. Gabor, “A new microscopic principle,” Nature ,vol.161, pp.777-778, 1948.

    [2]E. Cuche, P. Marquet and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel of-axis holograms,” Appl. Opt., vol. 38, pp. 6994–7001, 1999.

    [3]M. Born and E. Wolf, Principles of optics, Cambridge University Press, 1999.

    [4]H. Oberst, D. Kouznetsov, K. Shimizu, J. Fujita, and F. Shimizu, “Fresnel diffraction mirror for atomic wave,” Phys. Rev. Lett., vol. 94, no.013203, 2005.

    [5]R. C. MacLaurin, Light, Columbia University Press, 1909.

    [6]N. Pandey, D. P. Kellya, T. J. Naughtona and B. M. Hennellya, “Speed up of Fresnel transforms for digital holography using precomputed chirp and GPU processing,” Proc. SPIE, vol. 7442, 2009.

    [7]Z. Zhu, M. Sun, H. Ding, S. Feng, and S. Nie, “Fast numerical reconstruction of digital holography based on graphic processing unit,” Pacific Rim Conference on Lasers and Electro-Optics, 2009.

    [8]T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express, vol. 16, pp. 11776-11781, 2008.

    [9]T. Nishitsuji, T. Shimobaba, T. Sakurai, N. Takada, N. Masuda, and T. Ito, “Fast calculation of Fresnel diffraction calculation using AMD GPU and OpenCL”, Digital Holography and Three-Dimensional Imaging, OSA Techinal Digest Optical Society of America, 2011.

    [10]N. Masuda, T. Ito, K. Kayama, H. Kono, S. Satake, T. Kunugi, and K. Sato, “Special purpose computer for digital holographic particle tracking velocimetry,” Opt. Express, vol. 14, pp. 587-592, 2006.

    [11]莊子昕, 以菲涅耳轉換及相位展開為基礎之數位全像顯微鏡在FPGA上之實現, 國立臺灣師範大學資訊工程研究所, 2012.

    [12]C. J. Cheng, W. J. Hwang, C. T. Chen, and X. J. Lai, “Efficient FPGA-Based Fresnel Transform Architecture for Digital Holography,” IEEE Journal of Display Technology, vol. 10, pp.272-281, 2014.

    [13]施松甫, 適用於大尺寸菲涅爾轉換之FPGA硬體電路架構實現, 國立臺灣師範大學資訊工程研究所, 2016.

    [14]S. Hauck and A. Dehon, Reconfigurable Computing, Morgan Kaufmann, 2008.

    [15]Altera Corporation, FFT MegaCore Function User Guide, 2011

    [16]Altera Corporation, DDR and DDR2 SDRAM Controller Compiler User Guide, 2009.

    [17]Altera Corporation, External Memory Interface Handbook, 2016

    下載圖示
    QR CODE