簡易檢索 / 詳目顯示

研究生: 施勝禹
Shih, Sheng-Yu
論文名稱: 精微CNC鑽石研磨機開發應用於表面粗糙度量測之單晶鑽石探針製作研究
Development of a high-precision CNC grinding machine and study of a monocrystalline diamond probe grinding for measurement of surface roughness
指導教授: 陳順同
Chen, Shun-Tong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 170
中文關鍵詞: 切線研削法表面粗糙度單晶鑽石探針龍門四軸精微CNC研磨機
英文關鍵詞: tangential grinding, surface roughness, monocrystalline diamond probe, gantry 4-axis CNC grinding machine
DOI URL: https://doi.org/10.6345/NTNU202204832
論文種類: 學術論文
相關次數: 點閱:198下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發一部「高剛性桌上型龍門四軸精微CNC研磨機」,並規劃應用此研磨系統於製作工業界使用頻繁的表面粗糙度量測之鑽石探針。為精確量測工件面的表面粗糙度,其經常使用的探針測頭係針尖半徑為1-2μm 的單晶鑽石探針。為能對此最高硬度的材料進行研磨成形,研究首先建構一部具高剛性及高精度的精微CNC鑽石研磨系統,並設計雙主軸(Dual-Spindle),以支援鑽石探針的粗、精研削。鑽石探針為獲致高精密快速定位及快速拆卸,本研究於研削系統上設計一「磁性吸附機構」,並能提供鑽石磨輪與鑽石探針間的研削緩衝力,避免鑽石探針素材因撞擊導致針尖破裂的問題。為獲得高同心度且銳化的鑽石磨輪,本研究提出線上研修法(In-situ truing & dressing approach),以電鑄鑽石磨輪及線切割放電加工分別直接對高速主軸上的陶瓷結合劑鑽石磨輪及金屬結合劑鑽石磨輪進行線上修整,鑽石磨輪都無須拆卸,可節省校正時間並使鑽石磨輪保有最高同心精度。鑽石探針的加工成形採機械式(陶瓷結合劑鑽石磨輪及金屬結合劑鑽石磨輪)與機械化學式(鑄鐵盤(Scaife))的切線研削法(Tangential grinding),可得研削之最高切線速率,提供鑽石探針素材較高的材料移除能量。經一系列實驗,證實{111}面朝上的單晶鑽石素材,進給深度0.1μm/step,切削速度4,050m/min及進給率15 mm/min與8 mm/min的研削條件下,可獲得針尖半徑1.0及3.0μm的鑽石探針,探針表面粗糙度可達Ra0.06 μm,總成形時間約4小時。最後經由工業界的表面粗糙度量測儀進行量測驗證,並與同規格之商用鑽石探針進行量測比較,本研究量測結果可達JIS 2001規範的標準差範圍。顯見本研究已成功實現針尖半徑1.0μm的單晶鑽石探針,並順利應用於表面粗糙度的量測。本研究成果具商業化價值。

    The study presents the development of a high-precision, -rigidity tabletop gantry 4-axis CNC grinding machine for the study on grinding a monocrystalline diamond probe. The radius of diamond probe-head within 1-2 μm design is the most commonly used for measuring surface roughness in industry. In consideration of this, a CNC grinding system with dual-spindle design supporting rough and finish diamond grinding is constructed first. A magnetic sucking mechanism, which provides a cushioning force between the diamond probe and the diamond wheel, is designed on the grinding system to improve the accuracy of positioning of the probe and prevent crashes from occurring. To obtain a dressed diamond wheel with high co-shaft accuracy, an in-situ truing and dressing approach, by which an electroplated diamond wheel and a w-EDM mechanism are employed, is proposed in this study. The diamond wheels made with sintering vitrified bond and metal bond can all be in-situ dressed on a high-speed spindle, which requires no unloading, reloading or calibration. This saves the time of calibrating and maintaining the high co-shaft accuracy for the diamond wheels. By applying the diamond wheels and the scaife, the diamond probe grinding is conducted via mechanical and mechanical-chemical tangential grinding, respectively. The tangential grinding realizes a grinding with the highest tangential velocity, offering the diamond probe a high material removal rate. After a series of experiments, it was found that the diamond probe with 1.0 and 3.0 μm in radius and the surface roughness of Ra59 nm can be accomplished when using the machining conditions below: {111} plane upward, 0.1μm/step in the depth of feeding, the grinding speed of 4,050 m/min, and the feed-rates of 15 and 8 mm/min. The machining time is required within 4 hours. The finished diamond probe is verified by a commercial surface roughness measuring instrument and compared with the commercial diamond probes. The errors of the developed diamond probe fully conform to the standard of JIS 2001 indicating that the monocrystalline diamond probe with radii of 1.0 and 3.0 μm and an excellent surface finish can be realized and applied for measuring surface roughness successfully in this study. It is expected that the results of the study will contribute substantially to the precision micromachining industry.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 viii 圖目錄 xi 符號說明 xvii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 精微鑽石工具加工機發展 3 1.2.2 鑽石磨輪發展與應用 5 1.2.3 加工單晶鑽石之材料與應用 9 1.3研究動機 11 1.4研究目的 12 1.5研究方法 12 第二章 實驗原理 15 2.1單晶鑽石材料特性 15 2.1.1 單晶鑽石形成原理 16 2.1.2 加工單晶鑽石機制 19 2.1.3 單晶鑽石晶格方向性探討 22 2.2放電加工原理與應用 24 2.2.1 線切割放電削銳原理 25 2.3 焊接原理 27 2.3.1 真空硬焊原理 28 2.3.2 鑽石焊接原理 31 2.4磨輪 34 2.4.1 粒度(Grain size) 35 2.4.2 組織(Structure) 35 2.4.3 結合劑(Binder) 36 2.5 研磨原理 37 2.5.1 研磨基本原理 37 2.5.2 比磨削能(Specific grinding energy) 39 2.6 鑽石探針之表面粗糙度量測原理 40 第三章 實驗所需設備 43 3.1 CNC線切割放電加工機 43 3.2 CNC立式綜合加工機 43 3.3 高速主軸與導電迴路設計 44 3.3.1 滾珠軸承高速主軸 44 3.3.2 氣浮軸承高速主軸 45 3.4 精密研磨拋光機 46 3.5 超低溫空氣冷凝器 47 3.6 真空焊接爐 48 3.7 量測儀器 48 3.7.1 光學工具顯微鏡 48 3.7.2 掃描式電子顯微鏡 49 3.7.3 顯微拉曼散射光譜儀 49 3.7.4 白光干涉儀 50 3.8 實驗與工具材料選用 51 3.8.1 實驗材料 51 3.8.2 研磨工具 54 第四章 實驗方法 57 4.1 高剛性桌上型龍門四軸精微CNC研磨機設計與開發 58 4.1.1 研磨機設計 58 4.1.2 研磨機分析 62 4.1.3 研磨機鑄造、製作、組裝與校正 66 4.1.4 研磨機校正與振動分析 68 4.1.5 研磨機控制系統調校 70 4.2 磁性吸附式機構與線上鑽石磨輪修整機構設計 71 4.2.1 磁性吸附式機構 71 4.2.2 鑽石磨輪線上修整機構 74 4.3 鑽石磨輪設計 74 4.3.1 切線式鑽石磨輪設計與分析 75 4.3.2 切線式鑽石磨輪削正與銳化 76 4.4 鑽石焊接影響因素探討 77 4.5 單晶鑽石探針研削(Grinding)成形實驗 82 4.5.1 單晶鑽石晶格方向性實驗 82 4.5.2 磨輪研削方式及路徑對探針形貌影響 85 4.5.3 鑽石磨輪種類對鑽石探針研削的影響 88 4.5.4 鑽石磨輪粒度選用與進給深度影響 91 4.5.5 鑽石磨輪研削速度與進給率影響 97 4.5.6 研削液選用 102 4.5.7 鑄鐵盤研削實驗 105 4.5.8 磨輪消耗與磨耗比探討 107 4.5.9 單晶鑽石研削力改善實驗與探討 110 4.6 單晶鑽石探針研光(Lapping)與拋光(Polishing)實驗 113 4.6.1 單晶鑽石晶格方向性實驗 113 4.6.2 鑽石磨輪種類對研磨加工影響 115 4.6.3 磨輪研光與拋光進給深度影響 119 4.6.4 磨輪研削速度與進給率影響 124 4.6.5 鑄鐵盤精研實驗 130 4.6.6 單晶鑽石之機械化學拋光 135 4.6.7 磨輪磨耗與填塞探討 138 第五章 實驗驗證 143 5.1 接觸式表面粗糙度探針於標準塊規量測實驗 143 5.2 接觸式表面粗糙度探針於陶瓷試片量測實驗 145 第六章 結論 148 6.1 結果與討論 148 6.2 本研究貢獻 151 6.3 未來展望 152 參考文獻 153 附錄 162

    1.Global Industry Analysts Inc., Superhard Materials-A Global Strategic Business Report, http://www.strategyr.com/
    2.P. Zimnisky, Global Rough Diamond Production Estimated to Hit Over 135M Carats in 2015, Diamond Industry Analysis, pp. 1, 2015
    3.Diamond shades, Global Diamond Industry Essential Charts 2014, pp. 10-11, 2015
    4.宋建民,鑽石爭霸戰,全華圖書,pp. 26-28,2008
    5.台灣三豐,https://www.mitutoyo.com.tw/
    6.Billboard, The Billboard’s music merchant convention issue, The Billboard, pp. 12, 1958
    7.Ratnakala,鑽石研磨工具機,http://ratnakala.com/
    8.IMAHASHI,精微鑽石研磨工具機,http://www.imahashi.net/
    9.Coborn,6軸鑽石研磨工具機,http://www.coborn.com/productPGSeries.php
    10.ABICO,超精密6軸鑽石研磨工具機,http://www.abico-rd.co.jp/
    11.Rollomatic,精微雷射加工機,http://www.rollomatic.ch/en/
    12.Synova,水刀雷射鑽石加工機,http://www.synova.ch/machines/
    13.M. P. Hitchiner, E. M. WILKS, J. WILKS, The polishing of diamond and diamond composite material, Wear, Vol. 49, pp. 103-120, 1984
    14.B. K. Rhoney, A. J. Shih, R. O. Scattergood, J. L. Akemon, D. J. Gust, M. B. Grant, Wire electrical discharge machining of metal bond diamond wheels for ceramic grinding, International Journal of Machine Tools & Manufacture, Vol. 42, pp. 1355-1362, 2002
    15.B. Guo, Q. Zhao, On-machine dry electric discharge truing of diamond wheels for micro-structured surfaces grinding, International Journal of Machine Tools & Manufacture, Vol. 88, pp. 62-70, 2015
    16.K. H. Lin, S. F. Peng, S. T. Lin, Sintering parameters and wear performances of vitrified bond diamond grinding wheels, International Journal of Refractory Metals & Hard Materials, Vol. 25, pp. 25-31, 2007
    17.B. Linke, Dressing process model for vitrified bonded grinding wheels, CIRP Annals-Manufacturing Technology, Vol. 57, pp. 345-348, 2008
    18.M. J. Jackson, A. Khangar, X. Chen, G. M. Robinson, V. C. Venkatesh, N. B. Dahotre, Laser cleaning and dressing of vitrified grinding wheels, Journal of Materials Processing Technology, Vol. 185, pp. 17-23, 2007
    19.A. A. Torrance, J. A. Badger, The relation between the traverse dressing of vitrified grinding wheels and their performance, International Journal of Machine Tools & Manufacture, Vol. 40, pp. 1787-1811, 2000
    20.Y. Zhou, M. Atwood, D. Golini, M. Smith, P. D. Funkenbusch, Wear and self-sharpening of vitrified bond diamond wheels during sapphire grinding, Wear, Vol. 219, pp. 42-45, 1998
    21.H. Huang, Effects of truing, dressing intensity on truing, dressing efficiency and grinding performance of vitrified diamond wheels, Journal of materials processing technology, Vol. 117, pp. 9-14, 2001
    22.J. M. Derkx, A. M. Hoogstrate, J. J. Saurwalt, B. Karpuschewski, Form crush dressing of diamond grinding wheels, CIRP Annals-Manufacturing Technology, Vol. 57, pp. 349-352, 2008
    23.S. T. Chen, C. H. Chang, Development of an ultrathin BD-PCD wheel-tool for in situ microgroove generation on NAK80 mold steel, Journal of Materials Processing Technology, Vol. 213, pp. 740-751, 2013
    24.S. E. Grillo, J. E. Field, F. M. Bouwelen, Diamond polishing: the dependency of friction and wear on load and crystal orientation, Vol. 33, Journal of Physics D: Applied Physics, pp. 985-990, 2000
    25.J. R. Hird, J. E. Field, A wear mechanism map for the diamond polishing process, Wear, Vol. 258, pp. 18-25, 2005
    26.T. E. Derry, N. van der Berg, N.W. Makau, Diamond surfaces polished both mechanically and manually; an atomic force microscopy (AFM) study, Diamond & Related Materials, Vol. 17, pp. 127-136, 2008
    27.A. Kubota, S. Fukuyama, Y. Ichimori, M. Touge, Surface smoothing of single-crystal diamond (100) substrate by polishing technique, Diamond & Related Materials, Vol. 24, pp. 59-62, 2012
    28.V. D. Blank, B. A. Kulnitskiy, I. A. Perezhogin, Structural peculiarities of carbon onions, formed by four different methods: Onions and diamonds, alternative products of graphite high-pressure treatment, Scripta Materialia, Vol. 60, pp. 407-410, 2009
    29.陳順同,超精密加工,講義,國立臺灣師範大學機電工程學系,2014
    30.T. Schuelke, T. A. Grotjohn, Diamond polishing, Diamond & Related Materials, Vol. 32, pp. 17-26, 2013
    31.B. W. Anderson,珠寶鑑定法,徐氏文化,pp. 142-144,1901
    32.Laue’s Discovery of X-ray Diffraction by Crystals, University of Munich,Lecture, pp. 31-56, 1912
    33.B. Fultz, J. Howe, Chapter 1 Diffraction and the X-Ray Powder Diffractometer, 2013
    34.曾永華、陳柏穎、鄭宇明、游銘永,人造鑽石的合成及應用,http://ejournal.stpi.narl.org.tw/NSC_INDEX/Journal/EJ0001/10305/10305-10.pdf,科學發展,497期,2014
    35.Le blog diamant gems,高溫高壓法合成鑽石原理,http://blog.diamant-gems.com/
    36.Made-in-Zelenograd,化學氣相沉積技術,http://www.made-in-zelenograd.com/
    37.O. I. Leipunski, Snythetic diamonds, Usp Khim, Vol. 8, pp. 1519-1534, 1939
    38.黃忠良,天然鑽及合成鑽之物性,復漢出版社,pp. 1-18,2001
    39.柳松鑽石,http://www.lusung.com.tw/
    40.帝固鑽石,http://www.diku.com.tw/
    41.Yudole Jewelry, http://www.yudole.com/
    42.A. P. Malshe, B. S. Park, W. D. Brown, H. A. Naseem, A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates, Diamond and Related Materials, Vol. 8, pp. 1198-1213, 1999
    43.W. J. Zong, J. J. Zhang, Y. Liu, T. Sun, Achieving ultra-hard surface of mechanically polished diamond crystal by thermo-chemical refinement, Applied Surface Science, Vol. 316, pp. 617-624, 2014
    44.S. Jahanmir, Friction and wear of ceramics, National Insitute of Standards and Technology Gaithersburg, pp. 383-419, 1993
    45.E. H. Kraus, C.B. Slawson, Am. Mineral, pp. 661-676, 1939
    46.F. M. van Bouwelen, W. J. P. van Enckevort, A simple model to describe the anisotropy of diamond polishing, Diamond and Related Materials, Vol. 8, pp. 840-844, 1999
    47.P. Grodzinski, Diamond Technology: Production Methods for Diamond and Gem Stones, 2nd ed. N.A.G. Press, pp. 168, 1953
    48.Element six, http://www.e6.com/
    49.C. Sommer, Non-traditional machining handbook, Advance Publishing Inc., pp. 117-124, 2000
    50.董光雄,放電加工,復文書局出版社,pp. 74-75,1988
    51.蕭瑞陽,放電加工原理與應用-線切割放電加工, http://eshare.stut.edu.tw/EshareFile/2010_4/2010_4_e1e12437.ppt/
    52.M. M. Schwartz, Brazing, ASM International, USA, pp. 6-12, 1989
    53.張松柏,鋁金屬6061真空硬焊與氣體鎢極電弧對接焊件之疲勞性質研究,國立中央大學,碩士論文,pp. 12-18,2012
    54.W. D. Callister, Fundametals of Materials science and Engineering, John Wiley & Sons, New York Inc., pp. 130-139, 1993
    55.D. J. Stephenson, Diffusion Bonding, Distributed by Chapman & Hall North Way, pp. 12-18, 1983
    56.林彥勝,Diffusion,http://www2.isu.edu.tw/upload/52/37/files/dept_37_ lv_3_21880.pdf
    57.C. Pozrikidis, Capillary attraction of floating rods, Engineering Analysis with Boundary Elements, Vol. 36, pp. 836-844, 2012
    58.流體力學講義,www.ck.tp.edu.tw/~pxhuang/lecture/ch11-Fluid.ppt
    59.黃忠良,工業鑽石合成及接著,復漢出版社,pp. 1-99,1995
    60.C. Zhang, R. Wang, Z. Cai, C. Peng, Y. Feng, L. Zhang, Effects of dual-layer on the microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing, Surface & Coatings Technology, Vol. 277, pp. 299-307, 2015
    61.H. C. Hamaker, The London-van der Waals attraction between spherical particles, Physica IV, Vol. 10, pp. 1058-1072, 1937
    62.A. Dalgarno, A. E. Kingston, van der Waals Forces, IOPscience, Vol. 26, pp. 455-464, 1958
    63.M. Wu, C. Z. CAO, Rafi-ud-din, Xin-bo HE, Xuan-hui QU1, Brazing diamond/Cu composite to alumina using reactive Ag-Cu-Ti alloy, Trans. Nonferrous Met. Soc., Vol. 23, pp. 1701-1708, 2013
    64.T. Yamazaki, A. Suzumura, Relationship between X-ray diffraction and unidirectional solidification at interface between diamond and brazing filler metal, Journal of material science, Vol. 35, pp. 6155-6160, 2000
    65.B. Ma, Q. Pang, J. Lou, Rod-like brazed diamond tool fabricated by supersonic-frequency induction brazing with Cu-based brazing alloy, Journal of Refractory Metals and Hard Materials, Vol. 43, pp. 25-29, 2014
    66.U. E. Klotz, C. Liu, F. A. Khalid, H. R. Elsener, Influence of brazing parameters and alloy composition on interface morphology of brazed diamond, Materials Science and Engineering A, Vol. 495, pp. 265-270, 2008
    67.TECDIA, http://www.tecdia.com/tw/case/06.php
    68.宋健民,超硬材料,全華科技圖書股份有限公司,Chapter 3,2000
    69.王千億,機械製造,科友圖書股份有限公司,pp.62-66,2010
    70.庄司克雄,超精密加工と非球面加工,NTS,pp. 7-11,2004
    71.S. Ghosh, A. B. Chattopadhyay, S. Paul, Modelling of specific energy requirement during high-efficiency deep grinding, International Journal of Machine Tools & Manufacture, Vol. 48, pp. 1242-1253, 2008
    72.范光照,張郭益,精密量測,高立圖書有限公司,pp. 215-237,2007
    73.N. Suga, Metrology handbook, Mitutoyo(UK) Ltd, pp. 63-76, 2007
    74.日本規格協會,http://www.jsa.or.jp/default_english/default_english.html
    75.機械編輯群,精密量測便覽,台灣三豐儀器股份有限公司,pp. 573-609,1993
    76.慶鴻機電工業股份有限公司,CNC線切割放電加工機,線切割機保養手冊,B1 edition,2008
    77.台中精機,立式綜合加工機,http://www.or.com.tw/uploads/product/ OR_Vcenter_55_70.pdf
    78.NAKANISHI, Micro-grinder, Motors & Spindles, 08/09 Edition, pp. 2-13, 2008
    79.規格說明書,雙盤式金相研磨機,高擎企業有限公司
    80.超低溫空氣冷凝器,Tohin Shoji Co., Ltd,http://foreign.mingluji.com/TOHIN_SHOJI_CO_LTD
    81.規格說明書,真空焊接爐,台灣鑽石工業股份有限公司
    82.漢磊股份有限公司,工具顯微鏡,http://www.aixon.com.tw/
    83.JEOL USA Inc., Scanning Elextron Microscope JSM-6360, http://www.jeolusa.com/Default.aspx?tabid=174
    84.Jobin Yvon T64000拉曼檢測儀,HORIBA Scientific,http://www.horiba.com
    85.CNC影像測定機,台灣三豐儀器股份有限公司,https://www.mitutoyo.com.tw/
    86.Synthetic Diamond, http://www.matweb.com/
    87.六面體鑽石合成頂壓機,http://www.idacn.org/news/m/content-29747-1.html
    88.A. Saengsai, Fretting fatigue behavior of SUS304 stainless steel under pressurized hot water, Tribology International, Vol. 79, pp. 52-58, 2014
    89.SUS304,304不鏽鋼,http://www.matweb.com/
    90.規格說明書,陶瓷結合劑鑽石磨輪,一品鑽石工業股份有限公司
    91.規格說明書,金屬結合劑鑽石磨輪,A. L. M. T. Corp. Diamond Tools
    92.Aerotech, Linear Stage-ANT180-L Series, http://www.aerotech.com/
    93.Aerotech, Rotary Stages-ABRS Air-Bearing Direct, http://www.aerotech.com/
    94.M. K. Chang, Quantitative cell-counting slide for simultaneously satisfying multiple volumetric units, United States Patent, No. US6974692B2
    95.AEROTECH Inc., The unidex 500 motion conrtroller and windows software, Operation & Technical Manual, Version 1.3, pp. 6-1, 2000
    96.Z. Panga, H. Zhoua, F. Changa, P. Zhanga, D. Conga, C. Menga, C. Wanga, L. Renb, Effect of the micro-hardness difference between base metal and bionic coupling unit on wear resistance of gray cast iron, Optics & Laser Technology, Vol. 75, pp. 151-156, 2015
    97.D. O. Fernandino, A. P. Cisilino, R. E. Boeri, Determination of effective elastic properties of ferritic ductile cast iron by computational homogenization, micrographs and micro-indentation tests, Mechanics of Materials, Vol. 83, pp. 110-121, 2015

    無法下載圖示 本全文未授權公開
    QR CODE