研究生: |
謝知辰 Hsieh, Chih-Chen |
---|---|
論文名稱: |
單次認知要求運動對工作記憶之影響 Effects of single bout exercise with cognitive demand on working memory |
指導教授: |
洪聰敏
Hung, Tsung-Min |
口試委員: |
黃崇儒
Huang, Chung-Ju 洪巧菱 Hung, Chiao-Ling 洪聰敏 Hung, Tsung-Min |
口試日期: | 2023/07/28 |
學位類別: |
碩士 Master |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 執行功能 、工作記憶 、急性運動 、間歇運動 、事件關聯電位 |
英文關鍵詞: | cognitive demand, acute exercise, working memory, HIIT, ERP |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301591 |
論文種類: | 學術論文 |
相關次數: | 點閱:150 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:工作記憶是指牢記並處理不具感知力訊息的能力,對任務相關的訊息進行主動維持和操弄。已經有許多研究證實,單次性運動有助於提升工作記憶,且高認知需求的身體活動被認為可以更有效的提高認知能力。因此本研究旨在探討,單次性認知要求運動對成年人工作記憶和神經電生理機制之影響。方法:本研究招募 31 位成年男性(平均年齡 23.55 ± 2.19 歲),採用組內設計隨機次序平衡使每位參與者皆進行三種情境 20 分鐘的介入,分別為高認知要求運動情境(HE)、低認知要求運動情境(LE)、控制情境(AC)。在運動情境中,參與者需根據不同認知要求的規則踩踏燈號進行 20 分鐘中高強度間歇運動(運動一分鐘,休息一分鐘)。在三種情境介入前後皆進行 工作記憶 2-back 測驗和簡單反應時間測驗(SRT),並同時使用腦電圖紀錄 P3 成分的變化。結果:行為表現的部分,在2-back測驗中高認知要求運動情境反應時間改變量顯著優於控制情境(p = .015),但低認知要求運動情境與高認知要求運動情境和控制情境皆無差異,而三情境間 SRT 測驗表現亦無差異。腦電圖的部分,高認知要求運動情境的 P3 潛時改變量顯著大於控制情境(p = .002),然而三情境間 P3 振幅並無差異。結論:運動中加入與工作記憶測試有關的認知要求,能夠使工作記憶表現及神經處理速度有更好的促進效果,但未在 SRT 測驗中看到效果,提供了認知要求特定性的重要證據。
The aim of this study was to investigate the impact of acute exercise with cognitive demands on working memory and electrophysiological mechanisms in adults. Methods: This study recruited 31 adult males and employed a within-subjects design with randomized order to ensure that each participant underwent interventions in three conditions. There were high cognitive demand exercise (HE), low cognitive demand exercise (LE), and a control condition (AC). In exercise conditions, participants engaged in 20 minutes of moderate to high intensity intermittent exercise by following with different cognitive demands. Before and after each conditions, participants completed the 2-back working memory task and a simple reaction time task (SRT), with concurrent recording of changes in the P3 component using electroence-phalography (EEG). Results: The reaction time (RT) change score in high cognitive demand exercise was significantly better than that in control condition (p = .015) in the 2-back task. However, there were no differences in RT between low cognitive demand exercise and both high cognitive demand exercise and control condition, there were also no differences in SRT task performance across three conditions. In EEG analysis, the change score in P3 latency in high cognitive demand exercise was significantly larger than that in control condition (p = .002). Conclusion: Incorporating cognitive demands related to working memory task into exercise can lead to better facilitation of working memory performance and neural processing speed, providing important evidence of cognitive demand specificity.
Ai, J. Y., Chen, F. T., Hsieh, S. S., Kao, S. C., Chen, A. G., Hung, T. M., & Chang, Y. K. (2021). The effect of acute high-intensity interval training on executive function: A systematic review. International journal of environmental research and public health, 18(7), 3593.
Alves, C. R., Tessaro, V. H., Teixeira, L. A., Murakava, K., Roschel, H., Gualano, B., & Takito, M. Y. (2014). Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Perceptual and motor skills, 118(1), 63-72.
Andersen, C. K., Wittrup-Jensen, K. U., Lolk, A., Andersen, K., & Kragh-Sørensen, P. (2004). Ability to perform activities of daily living is the main factor affecting quality of life in patients with dementia. Health and quality of life outcomes, 2(1), 1-7.
Angevaren, M., Vanhees, L., Wendel-Vos, W., Verhaar, H. J. J., Aufdemkampe, G., Aleman, A., & Verschuren, W. M. M. (2007). Intensity, but not duration, of physical activities is related to cognitive function. European Journal of Cardiovascular Prevention & Rehabilitation, 14(6), 825–830.
Anzeneder, S., Zehnder, C., Martin-Niedecken, A. L., Schmidt, M., & Benzing, V. (2023). Acute exercise and children’s cognitive functioning: What is the optimal dose of cognitive challenge?. Psychology of Sport and Exercise, 66, 102404.
Audiffren, M., Tomporowski, P. D., & Zagrodnik, J. (2009). Acute aerobic exercise and information processing: modulation of executive control in a Random Number Generation task. Acta psychologica, 132(1), 85-95.
Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.
Baddeley, A. (2003). Working memory: looking back and looking forward. Nature reviews neuroscience, 4(10), 829-839.
Baddeley, A. D., & Hitch, G. J. (1994). Developments in the concept of working memory. Neuropsychology, 8(4), 485.
Bailey, C. E. (2007). Cognitive accuracy and intelligent executive function in the brain and in business. Annals of the New York Academy of Sciences, 1118(1), 122-141.
Balasekaran, G., Loh, M. K., Govindaswamy, V. V., & Robertson, R. J. (2012). OMNI Scale of Perceived Exertion: mixed gender and race validation for Singapore children during cycle exercise. European journal of applied physiology, 112(10), 3533-3546.
Benzing, V., Heinks, T., Eggenberger, N., & Schmidt, M. (2016). Acute cognitively engaging exergame-based physical activity enhances executive functions in adolescents. PloS one, 11(12), e0167501.
Best, J. R. (2010). Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Developmental review, 30(4), 331-351.
Bostrom, N., & Sandberg, A. (2009). Cognitive enhancement: methods, ethics, regulatory challenges. Science and engineering ethics, 15(3), 311-341.
Brisswalter, J., Collardeau, M., & Ren, A. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports Medicine, 32(9), 555–566
Budde, H., Voelcker-Rehage, C., Pietraßyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience letters, 441(2), 219-223.
Byun, K., Hyodo, K., Suwabe, K., Ochi, G., Sakairi, Y., Kato, M., ... & Soya, H. (2014). Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study. Neuroimage, 98, 336-345.
Chang, Y. K., Chu, C. H., Wang, C. C., Wang, Y. C., Song, T. F., Tsai, C. L., & Etnier, J. L. (2015). Dose–response relation between exercise duration and cognition. Medicine & Science in Sports & Exercise, 47(1), 159-165.
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain research, 1453, 87-101.
Chatrian, G. E., Lettich, E., & Nelson, P. L. (1985). Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. American Journal of EEG technology, 25(2), 83-92.
Chen, A. G., Yan, J., Yin, H. C., Pan, C. Y., & Chang, Y. K. (2014). Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychology of Sport and Exercise, 15(6), 627-636.
Chueh, T. Y., Hung, C. L., Chang, Y. K., Huang, C. J., & Hung, T. M. (2023). Effects of cognitive demand during acute exercise on inhibitory control and its electrophysiological indices: A randomized crossover study. Physiology & Behavior, 265, 114148.
Cluskey, M., & Grobe, D. (2009). College weight gain and behavior transitions: male and female differences. Journal of the American Dietetic Association, 109(2), 325-329.
Coco, M., Buscemi, A., Guerrera, C. S., Di Corrado, D., Cavallari, P., Zappalà, A., ... & Perciavalle, V. (2020). Effects of a bout of intense exercise on some executive functions. International journal of environmental research and public health, 17(3), 898.
Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in cognitive sciences, 7(12), 547-552.
Cooper, S. B., Bandelow, S., Nute, M. L., Morris, J. G., & Nevill, M. E. (2012). The effects of a mid-morning bout of exercise on adolescents' cognitive function. Mental Health and Physical Activity, 5(2), 183-190.
De Greeff, J. W., Bosker, R. J., Oosterlaan, J., Visscher, C., & Hartman, E. (2018). Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. Journal of Science and Medicine in Sport, 21(5), 501–507.
De Luca, C. R., Wood, S. J., Anderson, V., Buchanan, J. A., Proffitt, T. M., Mahony, K., & Pantelis, C. (2003). Normative data from the CANTAB. I: development of executive function over the lifespan. Journal of clinical and experimental neuropsychology, 25(2), 242-254.
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 9-21.
Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child development, 71(1), 44-56.
Diamond, A. (2013). Executive functions. Annual review of psychology, 64, 135-168.
Diamond, A. (2015). Effects of physical exercise on executive functions: going beyond simply moving to moving with thought. Annals of sports medicine and research, 2(1), 1011.
Donchin, E. (1981). Surprise! ... surprise? Psychophysiology, 18(5), 493–513.
Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., ... & Szabo-Reed, A. N. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Medicine and science in sports and exercise, 48(6), 1197.
Draper, S., McMorris, T., & Parker, J. K. (2010). Effect of acute exercise of differing intensities on simple and choice reaction and movement times. Psychology of Sport and Exercise, 11(6), 536-541.
Egger, F., Conzelmann, A., & Schmidt, M. (2018). The effect of acute cognitively engaging physical activity breaks on children's executive functions: Too much of a good thing?. Psychology of sport and exercise, 36, 178-186.
Eldreth, D. A., Patterson, M. D., Porcelli, A. J., Biswal, B. B., Rebbechi, D., & Rypma, B. (2006). Evidence for multiple manipulation processes in prefrontal cortex. Brain research, 1123(1), 145-156.
Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory capacity, and a two-factor theory of cognitive control.Etnier, J. L., Salazar, W., Landers, D. M., Petruzzello, S. J., Han, M., & Nowell, P. (1997). The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. Journal of sport and Exercise Psychology, 19(3), 249-277.
Fabiani, M., Gratton, G., & Coles, M. (2000). Event-related brain potentials: Methods, theory. Handbook of psychophysiology, 53-84.
Fedewa, A. L., & Ahn, S. (2011). The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes. Research Quarterly for Exercise and Sport, 82(3), 521–535.
Ferris, L. T., Williams, J. S., & Shen, C. L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine & Science in Sports & Exercise, 39(4), 728-734.
Fiest, K. M., Jette, N., Roberts, J. I., Maxwell, C. J., Smith, E. E., Black, S. E., ... & Hogan, D. B. (2016). The prevalence and incidence of dementia: a systematic review and meta-analysis. Canadian Journal of Neurological Sciences, 43(S1), S3-S50.
Hardy, C. J., & Rejeski, W. J. (1989). Not what, but how one feels: the measurement of affect during exercise. Journal of sport and exercise psychology, 11(3), 304-317.
Haverkamp, B. F., Wiersma, R., Vertessen, K., van Ewijk, H., Oosterlaan, J., & Hartman, E. (2020). Effects of physical activity interventions on cognitive outcomes and academic performance in adolescents and young adults: A meta-analysis. Journal of Sports Sciences, 38(23), 2637-2660.
Haynos, A. F., & O'Donohue, W. T. (2012). Universal childhood and adolescent obesity prevention programs: review and critical analysis. Clinical psychology review, 32(5), 383-399.
Hillman, C. H., Kamijo, K., & Pontifex, M. B. (2012). The relation of ERP indices of exercise to brain health and cognition. In Functional neuroimaging in exercise and sport sciences (pp. 419-446). Springer, New York, NY.
Hillman, C. H., Snook, E. M., & Jerome, G. J. (2003). Acute cardiovascular exercise and executive control function. International Journal of Psychophysiology, 48(3), 307-314.
Hogan, C. L., Mata, J., & Carstensen, L. L. (2013). Exercise holds immediate benefits for affect and cognition in younger and older adults. Psychology and aging, 28(2), 587.
Horn, D. B., O’Neill, J. R., Pfeiffer, K. A., Dowda, M., & Pate, R. R. (2008). Predictors of physical activity in the transition after high school among young women. Journal of Physical Activity & Health, 5(2), 275–285.
Ishihara, T., Sugasawa, S., Matsuda, Y., & Mizuno, M. (2017). The beneficial effects of game-based exercise using age-appropriate tennis lessons on the executive functions of 6–12-year-old children. Neuroscience letters, 642, 97-101.
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829-6833.
Jäger, K., Schmidt, M., Conzelmann, A., & Roebers, C. M. (2015). The effects of qualitatively different acute physical activity interventions in real-world settings on executive functions in preadolescent children. Mental Health and Physical Activity, 9, 1-9.
Ji, Z., Feng, T., Mei, L., Li, A., & Zhang, C. (2019). Influence of acute combined physical and cognitive exercise on cognitive function: an NIRS study. PeerJ, 7, e7418.
Judge, T. A., Piccolo, R. F., Podsakoff, N. P., Shaw, J. C., & Rich, B. L. (2010). The relationship between pay and job satisfaction: A meta-analysis of the literature. Journal of vocational behavior, 77(2), 157-167.
Julious, S. A., Campbell, M. J., & Altman, D. G. (1999). Estimating sample sizes for continuous, binary, and ordinal outcomes in paired comparisons: practical hints. Journal of biopharmaceutical statistics, 9(2), 241-251.
Kamijo, K., & Abe, R. (2019). Aftereffects of cognitively demanding acute aerobic exercise on working memory. Medicine and science in sports and exercise, 51(1), 153.
Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute effects of aerobic exercise on cognitive function in older adults. Journals of Gerontology: Series B, 64(3), 356-363.
Kamijo, K., Nishihira, Y., Higashiura, T., & Kuroiwa, K. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International Journal of Psychophysiology, 65(2), 114-121.
Kao, S. C., Cadenas‐Sanchez, C., Shigeta, T. T., Walk, A. M., Chang, Y. K., Pontifex, M. B., & Hillman, C. H. (2020). A systematic review of physical activity and cardiorespiratory fitness on P3b. Psychophysiology, 57(7), e13425.
Kao, S. C., Drollette, E. S., Ritondale, J. P., Khan, N., & Hillman, C. H. (2018). The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychology of Sport and Exercise, 38, 90-99.
Kao, S. C., Wang, C. H., & Hillman, C. H. (2020). Acute effects of aerobic exercise on response variability and neuroelectric indices during a serial n-back task. Brain and cognition, 138, 105508.
Kao, S. C., Wang, C. H., Kamijo, K., Khan, N., & Hillman, C. (2021). Acute effects of highly intense interval and moderate continuous exercise on the modulation of neural oscillation during working memory. International Journal of Psychophysiology, 160, 10-17.
Kao, S. C., Westfall, D. R., Soneson, J., Gurd, B., & Hillman, C. H. (2017). Comparison of the acute effects of high‐intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology, 54(9), 1335-1345.
Kashihara, K., Maruyama, T., Murota, M., & Nakahara, Y. (2009). Positive effects of acute and moderate physical exercise on cognitive function. Journal of physiological anthropology, 28(4), 155-164.
Klingberg, T. (2010). Training and plasticity of working memory. Trends in cognitive sciences, 14(7), 317-324.
Kramer, A. F., Colcombe, S. J., McAuley, E., Eriksen, K. I., Scalf, P., Jerome, G. J., ... & Webb, A. G. (2003). Enhancing brain and cognitive function of older adults through fitness training. Journal of Molecular Neuroscience, 20(3), 213-221.
Lang, J. W., Kersting, M., & Hülsheger, U. R. (2010). General mental ability, narrower cognitive abilities, and job performance: The perspective of the nested‐factors model of cognitive abilities. Personnel psychology, 63(3), 595-640.
Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008). Microstructural maturation of the human brain from childhood to adulthood. Neuroimage, 40(3), 1044–1055.
Lees, C., & Hopkins, J. (2013). Peer reviewed: Effect of aerobic exercise on cognition, academic achievement, and psychosocial function in children: A systematic review of randomized control trials. Preventing Chronic Disease, 10, E174.
Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neuroscience & biobehavioral reviews, 30(6), 718-729.
Li, J., & Siegrist, J. (2012). Physical activity and risk of cardiovascular disease—a meta-analysis of prospective cohort studies. International journal of environmental research and public health, 9(2), 391-407.
Loprinzi, P. D., & Kane, C. J. (2015, April). Exercise and cognitive function: a randomized controlled trial examining acute exercise and free-living physical activity and sedentary effects. In Mayo Clinic Proceedings (Vol. 90, No. 4, pp. 450-460). Elsevier.
Lowe, C. J., Hall, P. A., Vincent, C. M., & Luu, K. (2014). The effects of acute aerobic activity on cognition and cross-domain transfer to eating behavior. Frontiers in human neuroscience, 8, 267.
Luck, S. J. (2014). An introduction to the event-related potential technique. MIT press.
Ludyga, S., Gerber, M., Brand, S., Holsboer‐Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta‐analysis. Psychophysiology, 53(11), 1611-1626.
Ludyga, S., Gronwald, T., & Hottenrott, K. (2015). Do male and female cyclists’ cortical activity differ before and during cycling exercise?. Journal of Sport and Exercise Psychology, 37(6), 617-625.
Makeig, S., Bell, A., Jung, T. P., & Sejnowski, T. J. (1995). Independent component analysis of electroencephalographic data. Advances in neural information processing systems, 8.
Mavilidi, M. F., Ruiter, M., Schmidt, M., Okely, A. D., Loyens, S., Chandler, P., & Paas, F. (2018). A narrative review of school-based physical activity for enhancing cognition and learning: The importance of relevancy and integration. Frontiers in psychology, 2079.
McMorris, T., & Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation. Brain and cognition, 80(3), 338-351.
Murray, N. P., & Russoniello, C. (2012). Acute physical activity on cognitive function: a heart rate variability examination. Applied psychophysiology and biofeedback, 37(4), 219-227.
Murray, N. P., & Russoniello, C. (2012). Acute physical activity on cognitive function: a heart rate variability examination. Applied psychophysiology and biofeedback, 37, 219-227.
Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J., & Rattray, B. (2017). Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. British Journal of Sports Medicine, 52(3), 154–160.
Oberste, M., Javelle, F., Sharma, S., Joisten, N., Walzik, D., Bloch, W., & Zimmer, P. (2019). Effects and moderators of acute aerobic exercise on subsequent interference control: a systematic review and meta-analysis. Frontiers in psychology, 10, 2616.
Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: a cognitive-load approach. Journal of educational psychology, 84(4), 429.
Paschen, L., Lehmann, T., Kehne, M., & Baumeister, J. (2019). Effects of acute physical exercise with low and high cognitive demands on executive functions in children: A systematic review. Pediatric exercise science, 31(3), 267-281.
Pesce, C. (2012). Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. Journal of Sport and Exercise Psychology, 34(6), 766-786.
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148.
Polich, J. (2012). Neuropsychology of P300. In E. S. Kappenman & S. J. Luck (Eds.), Oxford handbook of event‐related potential com- ponents. Oxford university press.
Pontifex, M. B., McGowan, A. L., Chandler, M. C., Gwizdala, K. L., Parks, A. C., Fenn, K., & Kamijo, K. (2019). A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport and Exercise, 40, 1-22.
Pontifex, M. B., Miskovic, V., & Laszlo, S. (2017). Evaluating the efficacy of fully automated approaches for the selection of eyeblink ICA components. Psychophysiology, 54(5), 780-791.
Rathore, A., & Lom, B. (2017). The effects of chronic and acute physical activity on working memory performance in healthy participants: a systematic review with meta-analysis of randomized controlled trials. Systematic reviews, 6(1), 1-16.
Robertson, R. J., Goss, F. L., Rutkowski, J., Lenz, B., Dixon, C., Timmer, J., ... & Andreacci, J. (2003). Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Medicine & Science in Sports & Exercise, 35(2), 333-341.
Rohde, T. E., & Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35(1), 83-92.
Roig, M., Nordbrandt, S., Geertsen, S. S., & Nielsen, J. B. (2013). The effects of cardiovascular exercise on human memory: a review with meta-analysis. Neuroscience & Biobehavioral Reviews, 37(8), 1645-1666.
Scherder, E., Eggermont, L., Visscher, C., Scheltens, P., & Swaab, D. (2011). Understanding higher level gait disturbances in mild dementia in order to improve rehabilitation:‘Last in–first out’. Neuroscience & Biobehavioral Reviews, 35(3), 699-714.
Scudder, M. R., Drollette, E. S., Pontifex, M. B., & Hillman, C. H. (2012). Neuroelectric indices of goal maintenance following a single bout of physical activity. Biological Psychology, 89(2), 528–531.
Shipley, B. A., Der, G., Taylor, M. D., & Deary, I. J. (2006). Cognition and all-cause mortality across the entire adult age range: health and lifestyle survey. Psychosomatic medicine, 68(1), 17-24.
Spinath, B., Spinath, F. M., Harlaar, N., & Plomin, R. (2006). Predicting school achievement from general cognitive ability, self-perceived ability, and intrinsic value. Intelligence, 34(4), 363-374.
Spinath, B., Spinath, F. M., Harlaar, N., & Plomin, R. (2006). Predicting school achievement from general cognitive ability, self-perceived ability, and intrinsic value. Intelligence, 34(4), 363-374.
Stanford, K. I., & Goodyear, L. J. (2014). Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Advances in physiology education, 38(4), 308-314.
Svebak, S., & Murgatroyd, S. (1985). Metamotivational dominance: a multimethod validation of reversal theory constructs. Journal of personality and social psychology, 48(1), 107.
Tamnes, C. K., Herting, M. M., Goddings, A., Meuwese R., Blakemore S., Dahl R.E., Güroğlu B., Raznahan A., Sowell E.R., Crone E.A., Mills K.L. (2017). Development of the cerebral cortex across adolescence: A multisample study of interrelated longitudinal changes in cortical volume, surface area and thickness. Journal of Neuroscience, 37(12) 3302–3316.
Tomporowski, P. D., McCullick, B., Pendleton, D. M., & Pesce, C. (2015). Exercise and children's cognition: The role of exercise characteristics and a place for metacognition. Journal of Sport and Health Science, 4(1), 47-55.
Van den Berg, V., Saliasi, E., Jolles, J., De Groot, R. H., Chinapaw, M. J., & Singh, A. S. (2018). Exercise of varying durations: no acute effects on cognitive performance in adolescents. Frontiers in Neuroscience, 12, 672.
Vazou, S., Pesce, C., Lakes, K., & Smiley-Oyen, A. (2019). More than one road leads to Rome: a narrative review and meta-analysis of physical activity intervention effects on cognition in youth. International Journal of Sport and Exercise Psychology, 17(2), 153-178.
Verburgh, L., Königs, M., Scherder, E. J., & Oosterlaan, J. (2014). Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. British journal of sports medicine, 48(12), 973-979.
Verleger, R., Jaśkowski, P., & Wascher, E. (2005). Evidence for an integrative role of P3b in linking reaction to perception. Journal of psychophysiology, 19(3), 165-181.
Voelcker-Rehage, C., & Niemann, C. (2013). Structural and functional brain changes related to different types of physical activity across the life span. Neuroscience & Biobehavioral Reviews, 37(9), 2268-2295.
Whitford, T. J., Rennie, C. J., Grieve, S. M., Clark, C. R., Gordon, E., & Williams, L. M. (2007). Brain maturation in adolescence: Concurrent changes in neuroanatomy and neurophysiology. Human Brain Mapping, 28(3), 228– 237.
Yamazaki, Y., Sato, D., Yamashiro, K., Tsubaki, A., Takehara, N., Uetake, Y., ... & Maruyama, A. (2018). Inter-individual differences in working memory improvement after acute mild and moderate aerobic exercise. PLoS One, 13(12), e0210053.
Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Punishment: Issues and experiments, 27-41.