簡易檢索 / 詳目顯示

研究生: 陳安喬
An-Chiao Chen
論文名稱: 矽基太陽能電池熱處理分析及製程技術比較
Heat Treatment Analysis and Process Technology of Silicon Based Solar Cell
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 64
中文關鍵詞: 矽基太陽能電池熱處理分析及製程技術比較
英文關鍵詞: Heat Treatment Analysis and Process Technology of Silicon Based Solar Cell
論文種類: 學術論文
相關次數: 點閱:200下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今太陽能電池的種類很多,不過市場上主要還是以矽基為主,因此在本實驗中以矽基太陽能電池來探討。目前非晶矽太陽能電池中所使用的透明導電層各有不同,為了瞭解其差異,在實驗中使用FTO玻璃和ITO玻璃來當基板,完成太陽能電池製作後進行熱處理,使用不同條件的快速退火溫度,然後觀察其各種特徵參數的改變,如開路電壓、短路電流、填充因子、轉換效率等。而從實驗結果來看,可以發現FTO玻璃可以承受的溫度較高,各種特徵參數不會隨升溫而迅速變差,並從串聯電阻和分流電阻來探討其原因。
    另一方面,高效率的異質接面太陽能電池(HIT)也是實驗探討的內容之一,提高效率即可降低其生產成本,故從製程方面的參數改變,如使用的基板種類、基板厚度、背電場的有無等等,來探討其最佳化的參數設計,以提高其效率。從實驗中可發現,有製作背電場和使用IC等級的晶圓,的確可以達到較好的效率,期望未來可以改良製程條件和參數等,達到最佳化的條件,進一步提高異質接面太陽能電池的效率。

    The state-of-the-art solar cells have many types, but silicon based type is the mainstream for the market. Therefore, we will discuss the Si-based solar cell in this study. Several kinds of transparent conductive layer (TCO) are suited for amorphous Si solar cell. We used the FTO glass and ITO glass to investigate performance, as well as the heat treatment with different annealing condition will be performed. The devices parameters are extracted, such as open circuit voltage (VOC), short circuit current (ISC), fill factor (F.F), conversion efficiency (η). After the thermal annealing of a-Si:H thin film solar cell on FTO glass, the efficiency has slight enhanced until 250 C, and degraded at 300 C. The phase transition of a-Si:H is occurred for 300C annealing and makes Rsh decreasing dramatically. We also discussed the results from the series resistance (Rs) and shunt resistance (Rsh).
    On the other hand, high-efficiency Heterojunction with Intrinsic Thin Layer (HIT) solar cell also is fabricated and studied in this work. The higher efficiency means the cost down for solar cell market. Therefore, we will optimize the process parameters, such as the substrate types, substrate thickness, back surface electric field, etc. The efficiency is improved with back surface electric field (BSF) with IC grade wafer. We expect the process and structure optimization with high efficiency solar cells for next generation.

    Publication List I 中文摘要 II 英文摘要 III 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1-1. 研究背景 1 1-2. 研究動機 3 1-3. 非晶矽鍺合金薄膜在太陽能電池應用文獻 4 1-3-1. 簡介 4 1-3-2. 非晶矽合金薄膜 6 1-3-3. 非晶矽鍺合金薄膜 7 第二章 太陽能電池基本理論 2-1. 太陽能電池原理 15 2-1-1. 能量轉換效率 19 2-1-2. 量子效率 19 第三章 非晶矽薄膜太陽能電池備製在不同基板和退火處理 3-1. 簡介 20 3-2. 非晶矽薄膜太陽能電池實驗方法 22 3-2-1. 非晶矽薄膜太陽能電池備製 22 3-2-2. FTO玻璃(SnO2:F)與ITO玻璃(In2O3:Sn) 25 3-3. 快速退火處理(RTA) 28 3-4. 實驗結果比較與結論 29 3-4-1. 光電流 29 3-4-2. 暗電流 32 3-4-3. 量子效應 35 3-4-4. Rs & Rsh 36 3-4-5. 太陽能電池的四種特徵參數 39 第四章 HIT太陽能電池(Heterojunction with Intrinsic Thin-layer Solar Cell) 4-1. 簡介 42 4-2. 實驗方法 46 4-2-1. HIT太陽能電池備製 46 4-2-2. 晶圓磨薄和BSF(back surface field ) 48 4-3. 實驗結果與討論 50 4-3-1. IC grade 基板 50 4-3-2. Solar grade 基板 54 4-3-3. IC與Solar等級晶圓之HIT結論 56 第五章 結論 5-1. 結論 58 5-2. 未來工作 59 參考文獻 61

    [1] 林明獻, “太陽電池技術入門,” 全華出版社, chapter. 1-4、chapter. 2-17、chapter. 2-16、chapter. 2-19、chapter. 6-4, 2008.
    [2] 美國Clean Edge公司, http://cleanedge.com/ , 2010.
    [3] “Solar generation V-2008/Solar electricity for over one billion people and two million jobs by 2020,” EPIA, 2008.
    [4] 美國再生能源實驗室(NREL:National Renewable Energy Laboratory)http://www.nrel.gov/ , 2010.
    [5] 郭禮青, “太陽光電技術介紹,” 工業材料雜誌182期, pp. 137-140, 2002.
    [6] 雷永泉、萬群與石永康, “新能源材料,” 新文京出版社, pp. 296-299、pp. 306, 2004.
    [7] 余合興, “光電子學,” 中央圖書出版社, pp. 202-203, 2000.
    [8] 楊德仁, “太陽能電池材料,” 五南圖書出版股份有限公司, pp. 359-362, 2008.
    [9] 施敏, “半導體元件物理與製作技術,” 國立交通大學出版社, pp.180-181、 pp. 435, 2008.
    [10] Y. Bouizem , A. Belfedal, J. D. Sib, A. Kebab and L. Chahed, “Hydrogen-bonding configuration effects on the optoelectronic properties of glow discharge a-Si1−xGex:H with large x,” J. Phys. : Condens. Matter 19, No. 35. , 2007.
    [11] Ivan Chambouleyron, “Hydrogenated amorphous germanium and its alloys,” J. Phys.: Condens. Matter 5, pp. A 73-A 80, 1993.
    [12] K. C. Kao, R. D. McLeod, C. H. Leung, H. C. Card and H. Watanabe, “Dispersion of optical constants of amorphous Si1−x Gex (H) films beyond their absorption edges,” J. Phys. D: Appl. Phys. , vol. 16, pp. 1801-1811, 1983.
    [13] Y. P. Chou and S. C. Lee, “Structural, Optical and Electrical Hydrogenated Amorphous Silicon Germanium Alloys,” J. Appl. Phys. ,vol. 83, pp. 4111-4123.
    [14] X. Liao, W. Du, X. Yang, H. Povolny, X. Xiang and X. Deng, “High Efficiency Amorphous Silicon Germanium Solar Cells,” Photovoltaic Specialists Conference Record of the IEEE, pp. 1444-1447, 2005.
    [15] Y. K. Fang, S. B. Hwang, K. H. Chen, C. R. Liu, and L. C. Kuo, “A Metal Amorphous Silicon Germanium Alloy Schottky Barrier for Infrared Optoelectronic IC on Glass Substrate Application,” IEEE Trans. on Electron Devices, Vol. 39, No. 6, pp. 1350-1354, 1992.
    [16] R. S. Sys, H. T. Chen, Y.-T. Liu1, K.-W. Shen , and M. H. Lee, “The Wavelength Responsively of p/i/n Poly-Si Lateral Photodiode,” Optics and Photonics in Taiwan (OPT), 2007.
    [17] J. H. Moller, “Semiconductors for Solar Cells,” Artech House Inc., Boston, MA, 1993.
    [18] Jeffrey C. Yang, Prog. Photovolt. Res., Appl. 6 ,pp.181-186, 1998.
    [19] 機光科技股份有限公司
    [20] 銓盛科技股份有限公司
    [21] Daisuke Ide, Mikio Taguchi, Yukihiro Yoshimine, Toshiaki Baba, Toshihiro Kinoshita, Hiroshi Kanno, Hitoshi Sakata, Eiji Maruyama and Makoto Tanaka, “Excellent power-generating properties by using the HIT structure,” 33rd IEEE Photovoltaic Specialists Conference, pp. 1-5, 2008.
    [22] Makoto Tanaka, Mikio Taguchi, Tsuyoshi Takahama, Tow Sawada, Shigeru Kuroda, Takao Matsuyama, Shinya Tsuda, Akio Takeoka, Shoichi Nakano, Hiroshi Hanafusa, and Yukinori Kuwano , “Development of a New Heterojunction Structure (ACJ-HIT) and its Application to Polycrystalline Silicon Solar Cells,” Progess In Photovoltaics Research and Applications, Vol. 1, pp. 85-92, 1993.
    [23] Hitoshi Sakata, Takuo Nakai, Toshiaki Baba, Mikio Taguchi, Sadaji Tsuge, Kenji Uchihashi and Seiichi Kiyama, “20.7% Highest Efficiency Large Area (100.5cm2) HITTM Cell,” Proc. of the 28th IEEE PSC, pp. 7-12, 2000.
    [24] Hiroyuki Fujiwara, Tetsuya Kaneko, and Michio Kondo, “Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells,” Appl. Phys. Lett., Vol. 91, pp. 133508, 2007.
    [25] Toru Sawada, Norihiro Terada, Sadaji Tsuge, Toshiaki Baba, Tsuyoshi Takahama, Kenichiro Wakisaka, Shinya Tsuda and Shoichi Nakano, “High-Efficiency a-Si/c-Si Heterojunction Solar Cell,” First WCPEC, pp. 1219-1226, 1994.
    [26] K. Wakisaka, M. Taguchi, T. Sawada, M. Tanaka, T. Matsuyama, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi and Y. Kuwano, “More than 16% solar cells with a new 'HIT' (doped a-Si/nondoped a-Si/crystalline Si) structure,” Proc. of the 22nd IEEE Photovoltaic Specialists Conference, pp. 887-892, 1991.
    [27] Makoto TANAKA, Shingo OKAMOTO, Sadaji TSUGE and Seiichi KIYAMA, “Development of HIT Solar Cells with more than 21% Conversion Efficiency and Commercialization of Highest Performance HIT Modules,” Conference Record of the IEEE 3rd World Conference on Photovoltaic Energy Conversion, pp. 955-958, 2003.
    [28] Mikio Taguchi, Hitoshi Sakata, Yukihiro Yoshimine, Eiji Maruyama, Akita Terakawa and Makoto Tanaka, “An Approach for the Higher Efficiency in the HIT Cells,” Proc. of the 31th IEEE Photovoltaic Specialists Conference, pp. 866-871, 2005.
    [29] Eiji Maruyama, Akira Terakawa, Mikio Taguchi, Yukihiro Yoshimine, Daisuke Ide, Toshiaki Baba, Masaki Shima, Hitoshi Sakata and Makoto Tanaka, “Sanyo’s Challenges to the Development of High efficiency HIT Solar Cells and the Expansion of HIT Business,” Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion, pp. 1455-1460, 2006.

    無法下載圖示 本全文未授權公開
    QR CODE