簡易檢索 / 詳目顯示

研究生: 江文瑋
Chiang,Wen-Wei
論文名稱: 探討高中生氧化還原心智模式及概念改變之研究
A Study on Senior High School Students' Oxidation-reduction Mental Models and Concept Change
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 209
中文關鍵詞: 氧化還原心智模式概念改變彩虹理論
英文關鍵詞: Oxidation-reduction, mental model, concept change, rainbow theory
論文種類: 學術論文
相關次數: 點閱:214下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 探討高中生氧化還原心智模式及概念改變之研究

    本研究的主要目的在探討高中學生氧化還原概念心智模式的類型及相關概念改變情形。利用質性晤談,找出學生氧化還原的心智模式,發展封閉式二階層試題診斷工具,並針對屏東縣前三志願公立高中學生進行施測,研究結果以質化與量化兼具的方法進行分析。
    在質化分析方面,從RAINBOW理論(邱美虹,2008)中的認識論面向、本體論面向、概念發展等面向,探討不同年級的學生概念改變的情形:(一) 就認識論面向來看,學生對氧化還原概念的心智模式類型(1)就氧化還原反應概念而言,學生持有的心智模式有八種:氧模式、燃燒模式、電子模式、氧化數模式、時序模式、途徑模式、化合/分解模式、科學模式;(2)就氧化數定義及應用概念來說,學生持有的心智模式有七種:氧原子個數模式、非氧原子個數模式、電荷數模式、莫耳係數模式、程度模式、速率模式、科學模式。 (二) 就本體論面向而言,學生在氧化還原反應定義概念上,高一學生多數持有的氧模式、化合/分解模式,多錯置在物質本體中,高二學生若持有的是電子模式與氧化數模式,則分別錯置在過程本體的直接過程與物質類別中,高三學生若持有的是氧化數模式,則會誤派在過程本體的直接過程。 (三)就概念發展的觀點來解釋學生的想法,發現到學生對氧化還原反應的自發性解釋,常常與科學史上已經放棄的舊典範相同。高一學生多持有「燃燒模式」,其想法與Scheele(1779)發現到燃燒現象不謀而合,亦有學生持有「氧模式」,誠如Lavoisier發現到空氣中有一種物質,命名其為「氧氣」的想法呈現一致。高二、高三學生在學習過原子、電子、酸鹼反應單元後,再接觸到氧化還原課程,大多持有「電子模式」,認為氧化還原反應與離子價數有關,此想法與Arrenhius(1884)提出的離子理論與Lewis(1916)的價電子理論相呼應。而持有化合/分解模式的學生,認為一般反應中化合物的分解過程亦是氧化還原反應的一種,此想法與Liebig(1837)將氧化還原定義為化合物移出氫或釋放出氧原子的想法有其類似之處。
    在量化分析方面,採用的是SPSS的統計軟體分析概念表現情形,與研究者自行研發的一套機率統計軟體,研究發現學生在回答二階層試題時,我國高中生多數以氧的得失屬於氧化還原反應的概念普遍表現良好,隨年級增加上升;電子的得失亦屬於氧化還原反應的概念,高二學生表現略優於高三學生,但統計上無顯著差異;高三學生氧化數定義及應用概念得到較高的分數,隨著年級而有明顯增加的現象。
    本研究從多元面向探討高中學生氧化還原心智模式類型及概念改變情形,研究成果可作為課程設計者、科學教師們、科學教育學者之參考。

    A Study on Senior High School Students' Oxidation-reduction Mental Models and Concept Change

    This research mainly aims to explore senior high school students about their oxidation-reduction mental models and concept change. It is operated with qualitative interview to find out students' mental models of oxidation-reduction with enclosed two-tier test diagnosis tools developed. Also, the students from the best 3 senior high schools in Pingtung County are tested. Research results are analyzed in both quantitative and qualitative methods.

    As for qualitative analysis, from the dimensions of epistemology, ontology and conception development in the RAINBOW theory (Chiu,2008), the situations for concept change among students of various grades are explored. First,in view of epistemology dimension, students' mental models about the conceptions of oxidation-reduction are described as below. (1) As for the conception of oxidation-reduction, students hold 8 types of mental models, namely the “oxygen” model, the combustion model, the electronic model, oxidation number model, the time sequence model, the route model and the combination/decomposition model. (2)As for the definition and application for oxidation numbers, students hold 7 types of mental models, namely the oxygen-atom number model, the non-oxygen-atom number model, the electronic charge model, mole coefficient model, the “degree” model, the reaction rate model and the scientific model. Second,about the ontology dimension, in view of students' ideas about the definition conceptions of oxidation-reduction, most 10th grade students hold “oxygen” model and combination/decomposition models misplaced in material category. If 11th grade students hold electronic models and oxidation number models, they are separately misplaced in the direct process and material categories in process category. If 12th grade students hold oxidation number models, they are misplaced in the direct process of process category. Finally,in view of development to explain students' ideas, it is found the spontaneous explanation for students' ideas about oxidation-reduction are oftentimes the same as old examples forsaken by science history. As for 10th grade students holding the ideas of combustion models, the ideas are consistent with the combustion found by Scheele (1779). There are also students holding the “oxygen” models. It is consistent with the idea of a type of material existing in the air found by Lavoisier and the material is known as “oxygen”. After 11th and 12th grade students have learned the chapters about atoms, electrons and acid-base reaction and involved with the ideas of oxidation-reduction subsequently, most of them hold electron models and they suppose oxidation-reduction reaction and ion valence numbers are correlated. This situation is consistent with the ion theory proposed by Arrenhius (1884) and the valence electron theory proposed by Lewis (1916). As for students holding combination/ decomposition models, it is supposed that the decomposition process of compounds from common reaction is also a type of oxidation-reduction reaction. This idea is similar to the definition of oxidation-reduction proposed by Liebig (1837), namely the release of hydrogen atoms or oxygen atoms from compounds.

    About quantitative analysis, the analysis on conception performance is operated with SPSS software. Researchers also develop a set of probability statistical software to analyze students' possible answer routes among various question sets. From this research, it is found that when students answer two-tier questions, most local senior high school students holding the conception of oxidation-reduction meaning the gain and release oxygen atoms show their excellent out performance in learning with academic grades increasing. The ideas of both gain and release in electrons also belong to the conception of oxidation-reduction. The performance of 11th grade students are slightly superior to 12th grade students, but shows no significant difference statistically. 12th grade students reach higher scores about the definition of oxidation-reduction and application conception. With academic grades increased, the scores are increased significantly.

    In this research, the mental model types and concept change about oxidation-reduction of senior high school students are explored in multidimensional ways. Research results are proposed with reference available for academic course designers, science teachers and scholars of science education.

    第壹章 緒論 第一節 研究背景與動機 …………………………………………..…..… 1 第二節 研究目的與研究問題 …………………………………..…..…… 2 第三節 名詞解釋 ………………………………..…………..…..…….. 5 第四節 研究的基本假定與限制範圍 …………………..…..…..…….. 7 第貳章 文獻探討與分析 第一節 概念的定義及診斷方法 ………………………………….………… 8 第二節 概念改變 ……………………….………………………………… 17 第三節 心智模式 …………………………………….…………………… 26 第四節 氧化還原科學史、教科書與學校科學課程的課程模型 …..... .30 第五節 國內外氧化還原相關文獻 ……………………….………….... 38 第六節 文獻探討對本研究的啟發 ………………………….………. .. 57 第參章 研究方法 第一節 研究對象 ……………………………………………………….……58 第二節 研究工具 ………………………….………………………….……59 第三節 研究流程 …………………………………………………………… 60 第四節 資料處理和分析 ………………………………………….…..…..63 第肆章 結果與討論 第一節 二階層試題分析 ………………………………………………..… 64 第二節 各年級學生對氧化還原相關概念的整體表現 …........... 113 第三節 氧化還原之心智模式 …………………………………………… 125 第四節 學生氧化還原相關概念之心智模式分布情形 ……….…..…. 142 第五節 各年級學生答題路徑之機率 ………………………..……….. 146 第六節 學習成就高、中、低學生之個案分析研究 ………….…………149 第七節 診斷測驗結果與文獻之間的比較與分析…………….……….. 154 第伍章 結論與建議 第一節 結論 ………………………….…………………………….……163 第二節 建議 ……………………….…………………………………….165 第二節 本研究之特色 ……………….………………………………….167 參考文獻 ………………………………….………………………………….168 附錄一 半結構式晤談問卷 ……………………………..………………….177 附錄二 氧化還原概念二階層診斷試題 …………………..……………….180 附錄三 氧化還原概念圖 ……………………….………….……………….199 附錄四 氧化還原概念命題陳述與二階層試題之對照表 ……………… .201 附錄五 各年級學生答題路徑之機率統計軟體使用介紹 ………………...205

    參考文獻

     中文部份
    丁鋐鎰 (2000)。 國中氧化還原概念之精熟學習研究。國立台灣師範大學化學研究所碩士論文(未出版)。
    王瓏真 (2003)。 中小學生對於燃燒之迷思概念研究。國立台中師範學院自然科學教育研究所碩士論文(未出版)。
    王怡群 (2005)。 以知識結構為主符合SCORM規格之適性化補救教學網頁製作-以高職氧化還原反應課程為例。台中健康暨管理學院資訊工程學系碩士班碩士論文(未出版)。
    史嘉章 (2001)。 發展二階層試題以探討國高中學生氣體迷思概念。國立台灣師範大學科學教育研究所碩士論文(未出版)。
    邱美虹 (2000)。 概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    邱美虹(2003)。台灣地區中學生「粒子與化學平衡」概念之心智模式與成因之研究(III)。行政院國家科學委員會專題研究計劃成果報告。(可公開發表部份)。
    邱美虹 (2006)。 化學教育中建模模式的研發與實踐-子計畫四:以認知師徒制探討建模能力與歷程對學生學習物質科學中「氧化與還原」之影響(新制多年期第1年)。國科會期中報告(不提供公開查詢)。
    邱美虹 (2006)。 化學教育中建模模式的研發與實踐-子計畫四:以認知師徒制探討建模能力與歷程對學生學習物質科學中「氧化與還原」之影響(新制多年期第2年)。國科會計畫(暫不公開)
    邱鴻麟 (2001)。 科學概念學習研究(II)-化學科-子計畫三:我國中學生氧化還原概念內容和迷思概念成因之研究(II)。國科會計畫成果報告(可公開發表部份)。
    邱鴻麟 (2002)。 科學概念學習研究(III)─化學科-子計畫四:我國中學生氧化還原概念內容和迷思概念成因之研究(III)(1/2)。國科會計畫成果報
    告(可公開發表部份)。
    邱鴻麟 (2003)。 科學概念學習研究(IV)─化學科-子計畫四:我國中學生氧化還原概念內容和迷思概念成因之研究(IV)(2/2)。國科會計畫成果報告 (可公開發表部份)。
    李岱芳 (2001)。 情境式學習在「氧化還原」網站之應用與研究。靜宜大學資訊管理學系研究所碩士論文(未出版)。
    李淑萍 (2004)。 探討九年級學生的科學寫作及其與性別、智力、語文工作記憶、學習成就之相關研究以氧化還原為例。國立臺灣師範大學科學教育研究所在職進修碩士班論文(未出版)。
    李佩蓉 (2005)。 國民中小學「自然與生活科技」領域教科書內容與能力指標呈現之分析-以「化學反應」、「氧化還原」及「酸鹼鹽」為例。臺北市立教育大學科學教育研究所碩士論文(未出版)。
    吳怡嫻 (2006)。 跨年級學生氣體心智模式演變歷程之探究與分析。國立台灣師範大學科學教育研究所碩士論文(未出版)。
    周進洋 (2000)。 中學生科學概念學習研究:重要科學概念學習現況的調查及教學改善策略的研究(I)-子計畫四:促進中學生化學反應概念及氧化還原概念改變之研究(I)。國科會計畫成果報告(可公開發表部份)。
    林子議 (2002)。 自然科學學習平台之製作初探—以氧化還原單元為例。國立台中師範學院自然科學教育研究所碩士論文(未出版)。
    林靜雯 ( 2005)。 由概念演化觀點探究不同教科書教-學序列對不同心智模式學生電學學習之影響。國立台灣師範大學科學教育研究所博士論文(未出版)。
    姚錦棟 (2001)。 我國中學生酸鹼鹽迷思概念和心智模式之研究。國立台灣師範大學科學教育研究所碩士論文(未出版)。
    陳香如 (2000)。 高一學生氧化還原概念之精熟學習研究。國立台灣師範大學化學研究所碩士論文(未出版)。
    張馨文 (2000)。 師院學生電化學心智模式之研究。國立台中師範學院國民教育研究所碩士論文(未出版)。
    陳婉茹 (2004)。 探討動態類別對於化學平衡概念學習之研究-八年級學生概念本體及心智模式之變化。國立台灣師範大學科學教育研究所碩士論文(未出版)。
    陳盈吉 (2004)。 探究動態類比對於科學概念學習與概念改變歷程之研究-以國二學生學習氣體粒子為例。國立台灣師範大學科學教育研究所碩士論文(未出版)。
    陳郡鳳 (2004)。 探討理想氣體動力論之建模教學對高一學生建構微觀氣體粒子運動心智模式的影響。國立台灣師範大學科學教育研究所碩士論文(未 出版)。
    黃宰龍 (2001)。 探討STS教學模組對學生學習氧化還原概念的影響以防鏽與防腐單元為例。國立台中師範學院自然科學教育研究所碩士論文(未出版)。
    詹耀宗 (2005)。 以演化認識論探討高中學生氧化還原概念形成之研究。國立高 雄師範大學科學教育研究所碩士論文(未出版)。
    曾文良(2001)。適性式學習環境在氧化還原網站之應用研究。靜宜大學應用化學 研究所碩士論文(未出版)
    楊凌美(2004)。多元評量模式對國小學童自然科認知能力之區辨性及預測性之研究以「氧化還原」為例。國立嘉義大學科學教育研究所碩士論文(未 出版)。
    劉俊庚 (2001)。 迷思概念與概念改變教學策略之文獻分析-以概念構圖和後設分析模式探討其意涵與影響。國立台灣師範大學科學教育研究所碩士
    論文(未出版)。
    蔣勝發 (1998)。 以CAL促進高中化學「氧化還原反應」單元有意義學習之研究。國立高雄師範大學科學教育研究所碩士論文(未出版)。
    鍾曉蘭 (2006)。 以多重表徵的模型教學探究高二學生理想氣體心智模式的類型及演變的途徑。國立台灣師範大學科學教育研究所碩士論文(未出版)。

    -----------------------------------------------------------
     英文部分
    Chandrasegaran, A.L., Treagust, D.F. and Mocerino, M. (2005) Diagnostic assessment of secondary students’ use of three levels of representation to explain simple chemical reactions. Paper presented at the 36th annual conference of the Australasian Science Education Research Association (ASERA), Hamilton, New Zealand.
    Chen, C-C., Lin, H-S. and Lin. M-L. (2002) Developing a two-tier diagnostic instrument to assess high school students’ understanding – the formation of images by a plane mirror. Proceedings of the National Science Council, ROC (D),12(3), 106–121.
    Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43.
    Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: why some misconceptions are robust. Journal of the Learning Sciences, 14(2), pp.161-199.
    Chiu, M.H. (2001) Exploring mental models and causes of high school students’ misconceptions in acids-bases, particle theory and chemical equilibrium. Project Report in National Science Council.
    Chiu, M.H. (2002) Exploring mental models and causes of high school students’ misconceptions in acids-bases, particle theory and chemical equilibrium. Project Report in National Science Council.
    Chiu, M.H., Chiu, M. L. and Ho, C.Y. (2002) Using dynamic representations to diagnose students’ mental models of characteristics of particles. Paper presented at the Asia Pacific Symposium on Information and Communication Technology in Chemical Education, Research and Development (ICTinCERD), Kuala Lumpur, Malaysia.
    Chiu M. H. (2007). A National Survey of Students' Conceptions of Chemistry in Taiwan. International Journal of Science Education, Volume 29 No. 4 , Pages 421 – 452.
    Chiu, M. H. (2008, March). Research And Instruction-Based/Oriented Work (RAINBOW) for Conceptual Change in Science Learning – An Example of Students’ Understanding of Gas Particles. Paper present at the NARST 2008, March 29 - April 2, Baltimore, U.S.A.
    Coll, R. K. , & Treagust, D. F. (2000). Learners' mental models of metallic bonding: a cross-age study. Science Education, vol. 87, Issue 5, pp.685-707
    Davies, A. J. (1991). A model approach to teach redox. Education in Chemistry,28,135~137.
    de Jong, O., Acampo, J., & Verdonk, A. (1995). Problems in teaching the topic of redox reaction: Actions and conceptions of chemistry teachers. Journal of Research in Science Teaching, 32(10), 1097-1110.
    Eysenck, M. W. , & Keane, M. T. (2005). Cognitive psychology: A student's handbook (pp.293-302). N.Y. : Psychology Press.
    Fetherstonaugh, T. and Treagust, D.F. (1992) Students’ understanding of light and its properties: Teaching to engender conceptual change. Science Education, 76(6), 653–672.
    Franklin, B.J. (1992) The development, validation and application of a two-tier diagnostic instrument to detect misconceptions in the areas of force, heat, light and electricity. Unpublished Ph.D. thesis, the Louisiana State University and Agricultural and Mechanical College.
    Garnett, P. J. , Garnett, P. J. , & Treagust, D. F. (1990). Implications of research on
    students’ understanding of electrochemistry for improving science curricula and classroom practice. International Journal of Science Education,12,147-156.
    Garnett, P. J. , & Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation-reduction equations. Journal of Research in Science Teaching , Volume 29, Issue 2, Pages: 121-142.
    Garnett, P. J., Garnett, P. J. & Hackling, M. W. (1995). Students’ alternative conceptions in chemistry: a review of research and implications for teaching and learning. Studies in Science Education, 25, 69-95.
    Greca, I. M. , & Moreira, A. (2000). Mental models,conceptual models﹐and modeling. International Journal of Science Education, 22(1), 1-11.
    Griffard, P.B. and Wandersee, J.H. (2001) The two-tier instrument on photosynthesis: what does it diagnose? International Journal of Science Education, 23(10), 1039–1052.
    Halloun, H. and Hestenes, D. (1985) The initial knowledge state of college physics students. American Journal of Physics, 53, 1043–1055.
    Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026.
    Haslam, F. and Treagust, D.F. (1987) Diagnosing secondary students’ misconceptions of photosynthesis and respiration in plants using a two-tier multiple choice instrument. Journal of Biological Education, 21, 203–211.
    Hestenes, D., Wells, M. and Schwackhamer, G. (1992) Force concept inventory. The Physics Teacher, 30, 141–158.
    Lin, S-W. (2004) Development and application of a two-tier diagnostic test for high school students’ understanding of flowering plant growth and development. International Journal of Science and Mathematics Education, 2, 175–199.
    Lin, J. W., & Chiu, M. H. (2007). Exploring characteristics and diverse sources of students' mental models in acids and bases. International Journal of Science Education. 29(6), 771-803.
    Mann, M. and Treagust, D.F. (1998) A pencil and paper instrument to diagnose students’ conceptions of breathing, gas exchange and respiration. Australian Science Teachers’ Journal, 44(2), 55–59.
    Millar, R. and V. Hames. (2001) Using diagnostic assessment to improve students’ learning in science: some preliminary findings from work to develop and test diagnostic tools. Paper presented at the Third conference of the European Science education Research Association (ESERA), Thessaloniki, Greece.
    Odom, A.L. and Barrow, L.H. (1995) Development and application of a two-tier diagnostic test measuring college biology students’ understanding of diffusion and osmosis after a course of instruction. Journal of Research in Science Teaching, 32, 45–61.
    Paulus, G. M. and Treagust, D.F. (1991) Conceptual difficulties in electricity and magnetism. Journal of Science and Mathematics Education in South East Asia, 14(2), 47–53.
    Peterson, R.F., Treagust, D.F. and Garnett, P. (1989) Development and application of a diagnostic instrument to evaluate grade 11 and 12 students’ concepts of covalent bonding and structure following a course of instruction. Journal of Research in Science Teaching, 26, 301–314.
    Ringnes, V. (1995). Oxidation-reduction-learning difficulties and choice of redox
    models. School Science Review,77,74-78.
    Rodrigues, S. ,& Bell, B. (1995). Chemically speaking: a description of student-teacher talk during chemistry lessons using and building on students' experiences. International Journal of Science Education, Volume 17 No. 6 Pages 797 – 809.
    Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice. (pp. 147-176). Albany, NY: State University of New York Press.
    Schmidt, H.J. (1997). Students' misconceptions-looking for a pattern. Science Education, 81, 123-135.
    Soudani, M., Sivade, A., Cros, D., and Médimagh, M. S. (2000). Transferring knowledge from the classroom to the real world: Redox concept. School Science Review, 82(298), 65-72.
    Schmidt H-J. , Volke D. (2003).Shift of meaning and students' alternative concepts. International Journal of Science Education, Volume 25 No. 11 Pages 1409 – 1424.
    Tan, D.K-C. and Treagust, D.F. (1999) Evaluating students’ understanding of chemical bonding. School Science Review, 81, 75–83.
    Tan, K. C. G., Goh, N. K., Chia, L. S., & Treagust, D. F. (2002). Development and application of a two-tier multiple choice diagnostic instrument to assess high school students' understanding of inorganic Chemistry qualitative analysis. Journal of research in science teaching, 39(4), 283-301.
    Tan, D.K-C., Taber, K.S., Goh, N.K. and Chia, L-S. (2005) The ionisation energy diagnostic instrument: a two-tier multiple-choice instrument to determine high school students’ understanding of ionisation energy. Chemical Education Research and Practice, 6(4), 180–197.
    Treagust, D. F. (1995). Diagnostic assessment of students' science knowledge. In S. M. Glynn, & R. Duit, (Eds.), Learning science in theschools: Research reforming practice(pp. 327-346). Laurence Erlbaum,New Jersey.
    Treagust, D. F., Chandrasegaran, A. L. (2007). The Taiwan National Science Concept Learning Study in an International Perspective. International Journal of Science Education, Volume 29 No. 4, Pages 391 – 403.
    Tyson, L., Treagust, D. F. & Bucat (1999) The complexity of teaching and learning chemical equilibrium. Journal of Chemical Education, 35, 1031–1055.
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45-69.
    Wang, J-R. (2004) Development and validation of a two-tier instrument to examine understanding of internal transport in plants and the human circulatory system. International Journal of Science and Mathematics Education, 2, 131–157.

    無法下載圖示 本全文未授權公開
    QR CODE