研究生: |
張瑞安 Ruei-An Chang |
---|---|
論文名稱: |
X頻帶接收器前端電路與E頻帶低雜訊放大器設計與實現 Design and Implementation of X-Band RF Receiver Front-End Circuits and E-Band Low Noise Amplifier |
指導教授: |
蔡政翰
Tsai, Jen-Han |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 135 |
中文關鍵詞: | X頻段 、E頻段 、低雜訊放大器 、混頻器 |
英文關鍵詞: | X-band, E-band, Low Noise Amplifier, Mixer |
論文種類: | 學術論文 |
相關次數: | 點閱:193 下載:24 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對X頻帶衛星通訊與E頻帶無線通訊之訊射頻前端電路的設計與實現,包含低雜訊放大器與混頻器,晶片製作透過國家晶片中心提供的標準TSMC CMOS 90 nm與180 nm製程,內容分為三個部分,第一個部分為介紹X頻帶與E頻帶的研究背景,第二部分為所有電路設計、模擬與量測,第三部分為結論。
本論文將介紹三個電路,依序為X頻帶低雜訊放大器、E頻帶低雜訊放大器、X頻帶混頻器,分別在第二章、第三章與第四章。第二章實現了X頻帶低雜訊放大器,使用兩級共源極組態串接的方式,並採用變壓器匹配的方式能在低功率消耗、低雜訊與小面積下維持不錯的增益表現,量測在11 GHz下有小訊號增益13.4 dB,雜訊指數3.41 dB。在供應電壓1.0 V下整體功率消耗為4.8mW。晶片面積為0.44 〖mm〗^2。
第三章實現了E頻帶低雜訊放大器,採用三級串接組態的架構,第一級為共源極組態,第二級與第三級都是採用疊接組態,並且延續前一章節所使用的變壓器匹配方式減少晶片使用的面積,量測結果最大訊號增益在67 GHz有21 dB,雜訊指數在67.5 GHz為8.8 dB,在共源極組態與疊接組態供應電壓分別為1.2 V與2.4 V下的整體功率消耗為15.84 mW。晶片面積為0.338 〖mm〗^2。
第四章實現了X頻帶環形混頻器,採用弱反轉區的偏壓方式,混頻器可以操作在低LO功率以及低直流功率消耗,並在輸出IF端使用轉阻緩衝放大器提供足夠的轉換增益,量測轉換增益為0.5 ± 1.5 dB在9 ~ 15 GHz。LO驅動功率為-12 ~ -5 dBm,整體供應電壓為1.0 V,功率消耗為2 mW。晶片面積為0.295 〖mm〗^2。
The thesis is to develop design techniques of RF receiver front-end integrated circuits for X-band satellite communication system and E-band wireless communication system, including low noise amplifier (LNA) and mixer. The circuits are designed and fabricated on TSMC 180 nm 1P6M CMOS process and 90nm 1P9M CMOS process. The thesis is divided into three parts. The first part is the introduction of the X-band and E-band applications. The second part is total circuit design, simulation, and measurement results. Finally, a brief conclusion is given in the last part.
An X-band low noise amplifier, an E-band low noise amplifier, and an X-band ring mixer are presented in chapter 2, chapter 3, and chapter 4, respectively. Chapter 2 aims to develop an X-band low noise amplifier. A general overview of LNA design is given. The LNA uses two-stage common source configuration with transformer matching networks. It can achieve low power, low noise, and compact size while maintaining reasonable gain performance. The measured small signal gain and noise figure are 13.4 dB and 3.41 dB at 11GHz, respectively. The measured output 1-dB compression point (OP_1dB) is -2 dBm at 11 GHz. The total power consumption is 4.8 mW from 1.0 V supply voltage. The chip size is 0.44〖 mm〗^2.
The E-band low noise amplifier is presented on chapter 3. The LNA utilizes three-stage cascade configuration. The first stage is common source configuration for low noise consideration. The cascode configuration is selected for second and third stages to achieve high gain at E-band. The simulated maximum small signal gain is 21 dB at 67 GHz with total power consumption of 15.84 mW. The 3-dB bandwidth is 66 to 70 GHz. The noise figure is 8.8 dB at 67.5 GHz. The measured output 1-dB compression point (OP_1dB) is -8.2 dBm at 67 GHz. The chip size is 0.338 mm^2.
The last circuit in chapter 4 is an X-band down conversion ring mixer. By using a weak inversion biasing technique, the ring mixer can operate at a low LO drive power and low dc power consumption. In addition, an IF buffer amplifier is utilized to provide good conversion gain for the mixer. The measured flat conversion gain is 0.5 ± 1.5 dB from 9 to 15 GHz. The LO drive power is -8 dBm. The measured output 1-dB compression point (OP_1dB) is -14.15 dBm. The total power consumption is 2 mW of 1.0 supply voltage. The chip size is 0.295 mm^2.
[1]P. Philippe, L. Praamsma, R. Breunisse, E. van der Heijden, F. Meng, S. Bardy, F. Moreau, S. Wane and E. Thomas “A Low Power 9.75/10.6GHz Down-Converter IC in SiGe:C BiCMOS for Ku-Band Satellite LNBs “, IEEE BCTM, Oct. 2011, pp. 211-214.
[2]Ping-Yi Wang, Min-Chih Chou, Po-Cheng Su, Yin-Cheng Chang, Kai-Hsin Chuang, and Shawn S. H. Hsu, “A Fully Integrated Ku-Band Down-Converter Front-End For DBS Receivers,” IEEE MTT-S Int. Microw. Symp., Jun. 2014, pp. 1-6.
[3]SIVERSIMA, “FC1001E Series E-band Converters,” Datasheet Feb. 2011.
[4]SIVERSIMA, “mm-wave converter series for high capacity wireless transfer,” http://www.siversima.com/products/millimeter-wave-converters/, 2011.
[5]B. Liu, J. Zhou, and J. Mao, “A fully integrated low voltage (0.5V) X-BAND CMOS low noise amplifier,” in Microwave and Optical Technology Letter-Wiley Online Library, Jan. 2011, pp. 17-20.
[6]K.-J. Sun, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A noise optimization formulation for CMOS low-noise amplifiers with on-chip low-Q inductors,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1554-1560, Apr. 2006.
[7]K.-J. Sun, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 10.8-GHz CMOS low-noise amplifier using parallel-resonant inductor,” IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 1795–1798.
[8]E. Adabi and A.-M. Niknejad, “CMOS low noise amplifier with capacitive feedback matching,” IEEE Custom Integrated Circuits Conference, Sep. 2007, pp. 643-646.
[9]C.-L. Yang, T.-H. Hsieh and Y.-C. Chiang, “A novel self-biased low noise amplifier with current-reused technique for X band applications,” Asia-Pacific Microwave Conference, Dec. 2009, pp. 1667-1670.
[10]B. Afshar, A.-M. Niknejad, “X/Ku Band CMOS LNA design techniques,” IEEE Custom Integrated Circuits Conference, Sept. 2006, pp. 389-392.
[11]C. Doan, S. Emami, A. Niknejad, and R. Brodersen, “Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp.144–155, Jan. 2005.
[12]M. Fahimnia, M.R. Nezhad-Ahamadi, B. Bigarbegian, S. Safavi-Naieni, M. Mohammad-Taheri, and Y. Wang, “A 77 GHz Low Noise Amplifier Using Low-Cost 0.13μm CMOS Technology,” Microsystems and Nanoelectronics Research Conference, Oct. 2009, pp. 73-75.
[13]C. Y. Wu and P. H. Chen, “A Low Power V-band Low Noise Amplifier Using 0.13-μm CMOS Technology”. IEEE International Conference on Electronics, Circuits and Systems, Dec. 2007, pp.1328 – 1331.
[14]Y. Natsukari, M. Fujishima, “36mW 63GHz CMOS differential low noise amplifier with 14GHz bandwidth,” IEEE VLSI Circuits, Jun. 2009, pp. 252 – 253.
[15]M. Fahimnia, S. Safavi-Naieni, M. Mohammad-Taheri, and Y. Wang, “A 77 GHz Controllable Gain Low Noise Amplifier,” Iranian Conference on Electrical Engineering, May 2010, pp. 96 – 99.
[16]T.-P. Wang and H. Wang, “A 71–80 GHz amplifier using 0.13-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 685-687, Sept. 2007.
[17]Y.-S. Jiang, Z.-M. Tsai, J.-H. Tsai, H.-T. Chen, and H. Wang, “A 86 to108 GHz amplifier in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 124–126, Feb. 2008.
[18]Yo-Sheng Lin, Guan-Lin Lee, Chien-Chin Wang, and Chih-Chung Chen, “A 21.1 mW 6.2 dB NF 77~81 GHz CMOS Low-Noise Amplifier with 13.5±0.5 dB S21 and Excellent Input and Output Matching for Automotive Radars,” IEEE Radio and Wireless Symposium (RWS), Jan. 2014, pp.73-75.
[19]E. Cohen, S. Ravid, and D. Ritter, “A wideband gain-boosting 8mW LNA with 23dB gain and 4dB NF in 65nm CMOS process for 60 GHz applications,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Jun. 2012, pp. 1–4.
[20]H.V. Le, H.T. Duong, C.M. Ta, A.T. Huynh, R.J. Evans, and E. Skafidas, “A 77 GHz CMOS low noise amplifier for automotive radar receiver,” IEEE Radio Frequency Integration Technology (RFIT), Nov. 2012, pp. 174–176.
[21]Hsieh-Hung Hsieh, Po-Yi Wu, Chewn-Pu Jou, Fu-Lung Hsueh, and Guo-Wei Huang, “60GHz High-Gain Low-Noise Amplifiers with a Common-Gate Inductive Feedback in 65nm CMOS,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Jun. 2011, pp. 1-4.
[22]W. H. Lin, Y. N. Jen, J. H. Tsai, H. C. Lu, and T. W. Huang, “V-band Fully-Integrated CMOS LNA and DAT PA for 60 GHz WPAN Applications,” European Microwave Conference (EuMC), Sept. 2010, pp. 284-287.
[23]W.-H. Lin, J.-H. Tsai, Y.-N. Jen, T.-W. Huang, and H. Wang, “A 0.7-V 60-GHz low-power LNA with forward body bias technique in 90 nm CMOS process,” European Microwave Conference (EuMC), Sept. 2009, pp. 393-396.
[24]C.-S Lin, P.-S. Wu, H.-Y. Chang, and H. Wang, “A 9-50-GHz Gilbert-cell down-conversion mixer in 0.13um CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16 , no. 5, pp. 293–295, May 2006.
[25]H.-W. Chung, H.-C. Kuo, and H.-R. Chuang, “A 1.5-V 6-1 -GHz Low LO-Power Broadband CMOS Folded-Mirror Mixer for UWB Radio,” Asia-Pacific Microwave Conference, Dec. 2007, pp. 1-4.
[26]M.-D. Tsai and H. Wang, “A 0.3-25-GHz uItra-wideband mixer using commercial 0.18-um CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp. 522–524, Nov. 2004.
[27]C.-H. Kuo, B.-H. Huang, C.-C. Kuo, K.-Y. Lin, and H. Wang, “A 10-35GHz Low Power Bulk-Driven Mixer Using 0.13μm CMOS Process,” IEEE Microwave and Wireless Component Letters, vol. 18, no. 7, pp.455–457, Jun. 2008.
[28]F.-C. Chang, P.-C. Huang, S.-F. Chao, and H. Wang, “A low power folded mixer for UWB system applications in 0.18-um CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 367–369, May 2007.
[29]C. Kienmayer, M. Tiebout, W. Simburger, and A. L. Scholtz, “A Low power low-voltage NMOS bulk-mixer with 20 GHz bandwidth in 90nm CMOS,” IEEE Int. Symp. Circuits Syst., May 2004, vol. 4, pp. 385–388.
[30]Man-Long Her, Chun-Yuan Huang, Pao-Hsun Wu, “A Gilbert Mixer with High Gain for 18 GHz Application,” Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, July 2012, pp. 68-72.
[31]B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev., vol. 32, pp.97-109, July. 1928.
[32]H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev., vol. 32, pp.110-110, July. 1928.
[33]K. Chang, I. Bahl, and V. Nair, “RF and Microwave Circuit and Component Design for Wireless System,” A John Wiely & Sons, INC.2002.
[34]G. Gonzalez, Microwave Transistor Amplifier-Analysis and Design, 2nd Ed., Prentice Hall, Inc., 1984.
[35]B. Razavi, RF Microelectronics, Prentice-Hall, 1997.
[36]J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid State Circuits, vol. 35, no. 9, pp. 1368–1382, Sep. 2000.
[37]I. Aoki, S.D. Kee, D.B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 371–383, Mar. 2002.
[38]Kuo-Jung Sun, Zuo-Min Tsai, Kun-You Lin, and Huei Wang, “A 10.8-GHz CMOS low-noise amplifier using parallel-resonant inductor,” IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 1795–1798.
[39]H. Samavati, H. R. Rategh, and T. -H. Lee, “A 5-GHz CMOS wireless LAN receiver front end,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 765-772, May 2000.
[40]B.-J. Huang, K.-Y Lin, and H. Wang, “Millimeter-Wave Low Power and Miniature CMOS Multicascode Low-Noise Amplifiers with Noise Reduction Topology,” IEEE Trans. Microw. Theory Tech., vol.57, no.12, pp. 3049-3059, Dec. 2009.
[41]P.-S. Wu, C.-H. Wang, T.-W. Huang, and H. Wang, “Compact and broad-band millimeter-wave monolithic transformer balanced mixer,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3106–3114, Oct. 2005.
[42]林晉申,毫米波頻率轉換電路之研究,國立臺灣大學電機資訊學院電信工程研究所博士論文,民國96年。
[43]Jeng-Han Tsai, “Design of 40-108-GHz Low-Power and High-Speed CMOS Up-/Down-Conversion Ring Mixers for Multistandard MMW Radio Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, March 2012.
[44]B. G. Perumana, R. Mukhopadhyay, S. Chakraborty, C.-H. Lee, and J. Laskar, “A low-power fully monolithic subthreshold CMOS receiver with integrated LO generation for 2.4 GHz wireless PAN applications,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2229–2238, Oct. 2008.
[45]B. Razavi, Design of Analog CMOS Integrated Circuits. NewYork: McGraw-Hill, 2001, ch. 2, p. 27.
[46]D. M. Pozar, Microwave Engineering, 3rd Ed, John Wiley & Sons, Inc., 2005.
[47]林益璋,V頻帶CMOS低雜訊放大器設計與分析,國立臺灣師範大學應用電子科技所碩士論文,民國100年。
[48]林繼揚,應用於77GHz汽車防撞雷達系統之毫米波積體電路設計,國立臺灣師範大學應用電子科技所碩士論文,民國101年。
[49]葉景富,24-GHz CMOS射頻前端晶片及毫米波電路之研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國97年。