研究生: |
施佩汝 SHIH PEI JU |
---|---|
論文名稱: |
柳亞苯丙胺酸混合配子四價釩氧錯合物的結構.光譜.鍵結能力及催化性質研究 |
指導教授: |
蘇展政
Su, Chan-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
畢業學年度: | 87 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 柳亞苯丙胺酸 、高斯交疊解析 、鹵過氧 |
英文關鍵詞: | haloperoxidase, Gaussion analyses |
論文種類: | 學術論文 |
相關次數: | 點閱:104 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以柳亞苯丙胺酸(sal-phe),5-硝基柳亞苯丙胺酸(nitro-sal-phe)及3-甲氧基柳亞苯丙胺酸(methoxy-sal-phe)為主配子,成功地合成了一系列四價釩的錯合物──VO(sal-D-phe)(L),VO(sal-L-phe)(L) ,VO(nitro-sal-D-phe)(L), VO(nitro-sal-L-phe)(L) 及VO(methoxy-sal-L-phe)(L)其中L為雙牙基或單牙基。雙牙基有1,10-二氮雜菲(1,10-phenanthroline),聯啶(bipyridine),及4,7二甲基-二氮雜菲(4,7dimethyl-phenanthroline)而單牙基為H2O,ROH。
利用元素分析,紅外線光譜,紫外光可見光光譜,電子順磁光譜,圓形二色光光譜,環伏安法及X-光結構解析方法完成錯合物結構的鑑定及鍵結性質的探討。
目前已完成X-光單晶結構解析的四價釩錯合物有:
(1)[VO(sal-D-phe)(OCH3)(HOCH3)]
斜方晶系(Orthorhombic),空間群為P21212,其晶格常數為:a=14.3954(4) A,b=18.9384(7) A,c=6.7507(2) A,V=1840.42(10) A3,Z=4,精算值為R=0.0534,wR2=0.1075
(5) (2)[VO(sal-D-phe)(H2O)]
單斜晶系(Monoclinic),空間群為P21,其晶格常數為:a=14.3954(4) A,b=18.9384(7) A,c=6.7507(2) A,=90o,=107.897(6)o ,=90o,V=795.9(3) A3,Z=2,精算值為R=0.0536,wR2=0.0847
(3)[VO(sal-L-phe)(OC9H9)(HOC9H9)]
單斜晶系(Monoclinic),空間群為P21,其晶格常數為:a=12.73800(10)A, b=7.9986(2)A,c=16.1993(3)A,=90o,=110.6570(6)o,=90o ,V=1544.375(3) A3,Z=2,精算值為R=0.0839 , wR2=0.1603
(4)[VO(methoxy-sal-L-phe)(dmphen)](H2O)
單斜晶系(Monoclinic),空間群為P21,其晶格常數為:a=6.3312(2)A;b=20.1158(6)A;c=11.1132(3)A,=90o,=98.1580(10)o ,=90o,V=1403.29(7) A3,Z=2,精算值為
R=0.0694 , wR2=0.1298
從晶體結構,EPR光譜,UV-VIS光譜和CD光譜可得知 [VO(sal-phe) (L)],[VO(nitro-sal-phe)(L)] 和[VO(methoxy-sal-phe)(L)]系列錯合物結構為扭曲八面體結構。且經由可見光光譜高斯交疊解析與CD光譜高斯交疊解析綜合結果分析,可得知[VO(sal-pheH)(OCH3)(HOCH3)]和[VO(nitro-sal-pheH)(OCH3)(HOCH3)]的d軌域能階分裂為:dz2>dyz>dxz>dx2-y2>dxy,而[VO(sal-phe)(NN)] 的d軌域能階分裂為:dz2>dyz>dx2-y2>dxz>dxy。
並且針對所合成的不對稱釩氧錯合物來作為進行溴化反應的催化劑,探討其催化性質。
ABSTRACT
Mixed-ligand oxovanadium(IV) complexes of 5-nitro-N-salicylidene-phenylalaninato, N-salicylidenephenylalaninato and 3-methoxy-N-salicylidene-phenylalaninato, [VO(sal-D-phe)(L)], [VO(sal-L-phe)(L)] ,[VO(5-NO2-sal-D-phe)(L)], [VO(5-NO2-sal-L-phe)(L)] and [VO(3-CH3O-sal-L-phe)(L)], where L=1,10-phenanthroline, 2,2’-bipyridine, 4,7-dimethyl-1,10-phenanthroline, H2O and ROH, have been synthesized and characterized by elemental analyses and UV/VIS, CD, IR, and EPR spectroscopic measurements.
By using three-dimensional X-ray diffraction methods, the crystal and molecular structures of the following four complexes have been determined:
(1) [VO(sal-D-phe)(OCH3)(HOCH3)]
Orthorhombic, space group P21212, a = 14.3954(4) A, b = 18.9384(7) A, c = 6.7507(2) A, V = 1840.4(1) A3, Z = 4, R = 0.0534, Rw = 0.1075.
(2) [VO(sal-D-phe)(H2O)]
Monoclinic, space group P21, a = 14.3954(4) A, b = 18.9384(7) A, c = 6.7507(2) A, = 107.897(6)o, V = 795.9(3) A3, Z = 2, R = 0.0536 , Rw = 0.0847.
(3) [VO(sal-L-phe)(OC9H9)(HOC9H9)]
Monoclinic, space group P21, a = 12.7380(1) A, b = 7.9986(2) A, c = 16.1993(3) A, = 110.6570(6)o, V = 1544.375(3) A3, Z = 2, R = 0.0839 , Rw = 0.1603.
(4) [VO(3-CH3O-sal-L-phe)(4,7-dmphen)](H2O)
Monoclinic, space group P21, a = 6.3312(2) A, b = 20.1158(6) A, c = 11.1132(3) A, = 98.158(1)o, V = 1403.29(7) A3, Z = 2, R = 0.0694 , Rw = 0.1298.
Based on EPR, UV/VIS and CD spectral data, the [VO(sal-phe)(L)], [VO(5-NO2-sal-phe)(L)] and [VO(3-CH3O-sal-phe)(L)] complexes have distorted octahedral structures in consistence with the X-ray structures. Gaussion analyses of the visible and CD spectra suggest the sequences of the d orbitals for [VO(sal-phe)(OCH3)(HOCH3)]- and [VO(5-NO2-sal-phe)(OCH3) (HOCH3)]- as dz2>dyz>dxz>dx2-y2>dxy and for the [VO(sal-phe)(NN)] as dz2>dyz>dx2-y2>dxz>dxy. The reduction potentials are higher for [VO(sal-phe)(NN)] than for [VO(sal-phe)(OCH3)(HOCH3)]- by about 400 mV, revealing that vanadyl complexes are greatly stabilized by NN ligands.
Preliminary studies on bromination of organic substrates catalyzed by asymmetric vanadyl complexes have been performed.
參考資料:
1. Butler, A.; Carrano, C. J. Coord. Chem. Rev. 1991, 109, 61.
2. Rehder, D. Angew. Chem., Int. Ed. Engl. 1991, 30, 148.
3. Crans, D. C. Comments Inorg. Chem. 1994, 16, 1.
4. Butler, A.; Walker, J. V. Chem. Rev. 1993, 93, 1937.
5. Morningstar, J. E.; Johnson, M. K.; Case, E. E.; Hales, B. J. Biochemistry 1987, 26, 1795.
6. Schechter, Y.; Karlish, S. J. D. Nature 1980, 284, 556.
7. Mcneill, J. H.; Yuen, V. G.; Hoveyda, H. R.; Orvig. C. J. Med. Chem. 1992, 35, 1489.
8. Crans, D. C.; Mahroof-Tahir, M.; Shin, P. K.; Keramidas, A. D. Mol. Cell. Biochem. 1995, 153, 17.
9. Shechter, Y. Diabetes 1990, 39, 1.
10. Denu, J. M.; Lohse, D. L.; Vijayalakshmi, J.; Saper, M. A.; Dixon, J. E. Proc. Natl. Acad. Sci. USA 1996, 93, 2493.
11. Nakajima, K.; Kojima, K.; Kojuma, M.; Fujita, J. Bull. Chem. Soc. Jpn. 1990, 63, 2620.
12. Nakajima, K.; Kojima, K.; Toriumi, K.; Fujita, J. Bull. Chem. Soc. Jpn. 1989, 62, 760.
13. Bolm, C.; Bienewald, F. Angew. Chem. Int. Ed. Engl. 1995, 34, 2640.
14. Brink, H-B.; Tuynman, A.; Dekker, H-L.; Hemrika, W.;Izumi, Y.; Oshiro, T.; Schoemaker, H-E.; Wever, R. Inorg. Chem. 1998, 37, 6780.
15. Andersson, M.; Willetts, A.; Allenmark, S. J. Org. Chem. 1997, 62, 8455
16. Mimoun, H.; Chaumette, P.; Mignard, M.; Saussine, L.; Nouv. J. De Chim. 1983, 7, 467.
17. K. B. Sharpless, R. C. Michaelson, J. Am. Chem. Soc. 1977, 99, 1990.
18. Schiff, H. Ann. Suppl. 1864, 3, 343
19. Collins, S. R.; Fenton, D. E. Coord. Chem. Rev., 1996, 148, 19.
20. Clague, M. J.; Keder, N. L.; Butler, A. Inorg. Chem. 1993, 32, 4754.
21. Colpas, G. J.; Hamstra, B. J.; Kampf, J. W.; Pecoraro, V. L. J. Am. Chem. Soc. 1996, 118, 3469.
22. Hamstra, B. J.;Houseman, A-L. P.; Colpas, G. J.; Kampf, J. W.; LoBrutto, R.; Frasch, W. D.; Pecoraro, V. L. Inorg. Chem. 1997, 36, 4866.
23. Everett, R. R.; Butler, A. Inorg. Chem. 1989, 28, 395.
24. Colpas, G. J.; Hamstra, B. J.; Kampf, J. W.; Pecoraro, V. L. J. Am. Chem. Soc. 1994, 116, 3627.
25. Chakravarty, J.; dutta, S.; Chakravarty, A. J. Chem. Soc., Commun., 1993, 1091.
26. Zamian, J. R.; Dockal, E. R. Transition Met. Chem. 1996, 21, 370.
27. Cavaco, I.; Pessoa, J. C.; Duarte, M. T.; Henriques, R. T.; Matias, P. M.; Gillard, R. D. J. Chem. Soc., Dalton Trans., 1996, 1989.
28. Cavaco, I.; Pessoa, J. C.; Costa, D.; Duarte, M. T.; Gillard, R. D.; Matias, P. J. Chem. Soc., Dalton Trans., 1994, 149.
29. Pessoa, J. C.; Duarte, M. T.; Gillard, R. D.; Madeira, C.; Matias, P.; Tomaz, I. J. Chem. Soc., Dalton Trans., 1998, 4015.
30. Pessoa, J. C.; Gajda, T.; Gillard, R. D.; Kiss, T.; Luz, S. M.; Moura, J-J. G.; Tomaz, I.; Telo, J. D.; Torok, I. J. Chem. Soc., Dalton Trans., 1998, 3587.
31. Rath, S. P.; Ghosh, T.; Mondal, S. Polyhedron, 1997, 16, 4179.
32. Barral, M. C.; Jimenez-Aparicio, R.; Priego, J. L.; Royer, E. C.; Saucedo, M. J.; Urbanos, F. A. Polyhedron, 1995, 14, 2419.
33. Theriot, L. J.; Carlisle, G. O.; Hu, H. J. J. Inorg. Nucl. Chem. 1969, 31, 3303.
34. Keramidas, A. D.; Papaioannou, A. B.; Vlahos, A.; Kabanos, T. A.; Bonas, G.; Makriyannis, A.; Rapropoulou, C. P.; Terzis, A. Inorg. Chem. 1996, 35, 397.
35. Pessoa, J. C.; Silva, J. A-L.; Vieira, A. L.; Vilas-Boas, L.; O’Brien, P.; Thornton, P. J. Chem. Soc., Dalton Trans., 1992, 1745.
36. Kasahara, R.; Tsuchimoto, M.; Ohba, S.; Nakajima, K.; Ishida, M. Inorg. Chem. 1996, 35, 7661.
37. Dutta, S.; Mondal, S.; Chakravorty, A. Polyhedron, 1995, 14, 1163.
38. Carrano, C. J.; Nuun, C. M.; Quan, R.; Bonadies, J. A.; Pecoraro, V. L. Inorg. Chem. 1990, 29, 944.
39. Mondal, S.; Dutta, S.; Chakravorty, A. J. Chem. Soc., Dalton Trans., 1995, 1115.
40. Duma, T. W.; Hancock, R. D. J. Coord. Chem. 1994, 31, 135.
41. Pasini, A.; Gullotti, M. J. Coord. Chem. 1974, 3, 319.
42. Vergopoulos, V.; Priebsch, W.; Fritzsche, M.; Rehder, D. Inorg. Chem. 1993, 32, 1884.
43. Percy, G. C. J. Inorg. Nucl. Chem. 1975, 32, 2071.
44. Selbin, J.; Holmes, L. H.; McGlynn, S.P.; Inorg. Nucl. Chem. 1963, 25, 1359.
45. Hamilton, D. E. Inorg. Chem. 1991, 30, 1670.
46. Selbin, J. Chem. Rev. 1965, 65, 153.
47. Kolawole, G. A.; Patel, K. S. J. Coord. Chem. 1982, 12, 121.
48. Basu,P.; Pal, S.; Chakravorty, A. J. Chem. Soc., Dalton Trans, 1991, 3217.
49. Hausan, C. R.; Kabanos, T. A.; Keramidas, A. D.; Mentzafos, D.; Terzis, A. Inorg. Chem. 1992, 31, 2857.
50. Cornman, C. R.; Kamrf, J.; Lah, M. S.; Pecoraro, V. L. Inorg. Chem. 1992, 31, 2035.
51. Chakaravorty, J.; Dutta, S.; Chandra, S. K.; Basu, P.; Chakaravorty, A. Inorg. Chem. 1993, 32, 4249.
52. Ballhausen, C. J.; Gray, H. B. Inorg. Chem. 1962, 1, 111.
53. Zah-Letho, J.; Samuel, E.; Livage, J. Inorg. Chem. 1988, 27, 2233.
54. Heinert, D.; Martell, A. E. J. Am. Chem. Soc. 1963, 85, 188.
55. Nicholson, R. S.; Shain, I. Anal. Chem. 1964, 36, 706
56. Wang, S. L.; Wang, P. C.; Nieh, Y. P. J. Appl. Cryst. 1990, 52, 23
57. Tang, S-P. W.; Coleman, J. E.; Myer, Y. P. J. Biol. Chem. 1968, 243, 4286.
58. Bosnich, B. J. Am. Chem. Soc. 1968, 90, 627.
59. Stephen F. Mason, “Molecular optical activity and the chiral discrimination”