簡易檢索 / 詳目顯示

研究生: 黃建豪
Huang Chien-Hao
論文名稱: 在H空間中極大元與平衡點的存在性定理
Existence Theorems of Maximal Elements and Equilibria in H-spaces
指導教授: 朱亮儒
Chu, Liang-Ju
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 57
中文關鍵詞: H凸集l.c.空間Qα-濃縮映射極大元抽象經濟平衡點LΦLΦ
英文關鍵詞: H-convex, l.c.-space, Qα-condensing mapping, maximal element, abstract economy, equilibrium point, of class L, of class Φ,
論文種類: 學術論文
相關次數: 點閱:102下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文裡,我們首先把Himmelberg測量precompact集合的方法推廣到一般沒有線性結構的拓樸空間上,進而得到一個一般化的Metha’s Theorem,並應用此結果,對condensing mappings發展一些新的固定點定理。接著我們將建立一些新的極大元存在性及抽象經濟的平衡點存在性。針對兩類majorized的集值函數,我們改善了以前一些常見的存在性定理,並且將它一般化到l.c.-spaces上。

    一種是對Lθ-majorized這類的集值函數,利用Tarafdar的固定點定理,在加入一個適當條件下,我們證明了一個common maximal element的存在性,並使用這個結果,推得一個抽象經濟的平衡點存在性;此外,也應用在求擬變分不等式的解。

    另一種則是針對Φθ-majorized這類集值函數,我們先利用一個在H-space下已知的KKM principle去推得一個固定點定理,並用這個定理去推出我們想要的一些存在性結果。最後,我們也探討了模糊抽象經濟的平衡點存在性。

    1 Introduction 1.1 Background . . . . . . . . . . . . . . . . . . . . . 1 1.2 Basic De nitions and Technical Properties . . . . . 7 2 Maximal Elements for L-majorized Mappings 2.1 Preliminary . . . . . . . . . . . . . . . . . . . . 19 2.2 Existence Theorem of Common Maximal Elements . . . 23 2.3 Equilibria of Noncompact Abstract Economies . . . . 29 2.4 System of Quasi-Variational Inequalities . . . . . 33 3 Maximal Elements For -majorized Mappings 3.1 Preliminary . . . . . . . . . . . . . . . . . . . . 38 3.2 Existence Theorem of Maximal Elements . . . . . . . 41 3.3 Equilibria of Abstract Economies . . . . . . . . . 45 3.4 Equilibria of Fussy Abstract Economies . . . . . . 48 Bibliography 53

    [1] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
    [2] C. Bardaro and R. Ceppitelli, Some further generealizations of Knaster-
    Kuratowski-Mazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl.
    132 (198), 484-490.
    [3] A. Borglin and H. Keiding, Existence of equilibrium actions and equilibrium : a
    note on the `new' existence theorem, J. Math. Econom. 3 (1976), 313-316.
    [4] L. J. Chu and C. H. Huang, Generalized selection theorems without convexity,
    Nonlinear Anal. TMA 73 (2010), 3224-3231.
    [5] L. J. Chu and C. H. Huang, An Extension of Michael's Selection Theorem, Acta
    Math. Vietnam. 36(1) (2011), 105-112.
    [6] X. P. Ding and E. Tarafder, Some coincidence theorems and applications, Bull.
    Austral. Math. Soc. 50 (1994), 73-80.
    [7] X. P. Ding, W. K. Kim, and K. K. Tan, Equilibria of non-compact General-
    ized Games with L-majorized preference correspondences, J. Math. Anal. Appl. 164
    (1992), 508-517.
    [8] X. P. Ding and G. X. Z. Yuan, The study of existence of equilibria for generalized
    games without lower semicontinuity in locally topological vector spaces, J. Math. Anal.
    Appl. 227 (1998), 420-438.
    [9] K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces,
    Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126.
    [10] D. Gale and A. Mas-Colell, An equilibrium existence for a general model without
    ordered preferences, J. Math. Econom. 2 (1975), 9-15.
    [11] C. J. Himmelberg, J. R. Porter, and F. S. Van Vleck, Fixed point theorems
    for condensing multifunctions, Proc. Amer. Math. Soc. 23 (1969), 635-641.
    [12] C. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156
    (1991), 341-357.
    [13] C. H. Huang and L. J. Chu, Equilibria of abstract economies with applications,
    J. Nonlinear Convex Anal. 14(1) (2013), 63-70.
    [14] N. J. Huang, Some new equilibrium theorems for abstract economies, Appl. Math.
    Lett. 11(1) (1998), 41-45.
    [15] Y. Y. Huang, T. Y. Kuo, and J. C. Jeng, Fixed point theorems for condensing
    multimaps on locally G-convex spaces, Nonlinear Anal. 67 (2007), 1522-1531.
    [16] J. L. Kelley, General Topology, Springer-Verlag Press, 1975.
    [17] W. K. Kim, A maximal element of condensing multimaps, J. Chung. Math. Soc. 6
    (1993), 59-63
    [18] E. Klein and A. C. Thompson, Theory of Correspondences, John Wiley & Sons,
    Inc., 1984.
    [19] L. J. Lin and Q. H. Ansari, Collective xed points and maximal elements with
    applications to abstract economies, J. Math. Anal. Appl. 296 (2004), 455-472.
    [20] L. J. Lin, S. Park and Z. T. Yu, Remarks on xed points, maximal elements, and
    equilibria of generalized games, J. Math. Anal. Appl. 233 (1999), 581-596.
    [21] X. G. Liu and H. T. Cai, Maximal elements and equilibrium of abstract economy,
    Appl. Math. Mech. 22 (2001), 1225V1230.
    [22] G. Mehta, Maximal elements of condensing preference maps, Appl. Math. Lett.
    3(2) (1990), 69-71.
    [23] G. Mehta, K. T. Tan and X. Z. Yuan, Fixed points, maximal elements and
    equilibria of generalized games, Nonlinear. Appl. TMA, 28 (1997), 689-699.
    [24] A. Mas-Colell, An equilibrium existence without complete or transitive preferences,
    J. Math. Econom. 1 (1974) , 237-246.
    [25] E. Michael, Continuous selections I, Ann. Math. 63 (1956), 361-382.
    [26] S. Park, Fixed point theorems in locally G-convex spaces, Nonlinear. Appl. TMA 48
    (2002), 869-879.
    [27] M. Patriche, Existence of equilibrium pairs for generalized games, Annals of the
    Alexandru Ioan Cuza University - Mathematics 57 (2011), 131-144
    [28] D. I. Rim and W. K. Kim, A xed point theorem and existence of equilibrium for
    abstract economies, Bull. Austral. Math. Soc. 45 (1992), 385-394.
    [29] W. Shafer and H. Sonnenschein, Equilibrium in abstract economies without or-
    dered preferences, J. Math. Econom. 2 (1975), 345-348.
    [30] K. K. Tan and Z. Wu, A note on abstract economies with upper semicontinous
    correspondence, Appl. Math. Lett. 11(5) (1998), 21-22.
    [31] K. K. Tan and X. Z. Yuan, Some minimax inequalities and applications to exis-
    tence of equilibria in H-spaces, Nonlinear Anal. 24 (1995), 1457-1470.
    [32] K. K. Tan and X. Z. Yuan, Lower semicontinuity of multivalued mappings and
    equivalent points, Proceedings of the First World Congress of Nonlinear Analysis,
    Tampa, FL, 1992, Walter de Gruyter, Berlin/New York (1996), 1849V1860
    [33] E. Tarafdar, A xed point theorems in H-spaces and related results, Bull. Austral.
    Math. Soc. 42 (1990), 133-140.
    [34] E. Tarafdar, Fixed point theorems in H-spaces and equilibrium points of abstract
    economies, J Austral. Math. Soc. (Series A) 53 (1992), 252-260.
    [35] E. Tarafdar and M. Chowdhury, Topological Methods for Set-Valued Nonlinear
    Analysis, World Scienti c Publishing Co. Pte. Ltd, Singapore, 2008.
    [36] E. Tarafdar and P. J.Watson, Coincidence and the Fan-Glicksberg xed point the-
    orem in locally H-convex uniform spaces, Research report, The University of Queens-
    land, 1997.
    [37] X. Wu, A new xed point theorem and its applications, Proc. Amer. Math. Soc. 125
    (1997), 1779-1783.
    [38] X. Wu, Existence theorem for maximal elements in H-spaces with applications on
    the minimax inequalities and equilibrium of games, J. Appl. Anal. 6 (2000), 283-293.
    [39] X. Wu and Z. F. Shen, Equilibrium of abstract economy and generalized quasi-
    variational inequality in H-spaces, Topology Appl. 153 (2005), 123-132.
    [40] X. Wu and X. Z. Yuan, On equilibrium problem of abstract economy, generalized
    quasi-variational inequality, and an optimization problem in locally H-convex spaces,
    J. Math. Anal. Appl. 282 (2003), 495-504.
    [41] Y. L. Wu, C. H. Huang and L. J. Chu, An extension of Mehta Theorem with
    applications, J. Math. Anal. Appl. 391(2) (2012), 489-495.
    [42] N. C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equi-
    libria in linear topological spaces, J. Math. Econom., 12 (1983), 233-245.
    [43] G. X. Z. Yuan , The Study of Minimax Inequalities and Applications to Economies
    and Variational Inequalities, Mem. Amer. Math. Soc.,132 (1998)
    [44] G. X. Z. Yuan and E. Tarafdar, Maximal elements and equilibria of generalized
    games for U-majorized and condensing correspondences, Int. J. Math. Math. Sci., 22
    (1999), 179-189.

    下載圖示
    QR CODE