研究生: |
陳彥嘉 Yen-Chia Chen |
---|---|
論文名稱: |
台灣產微孔珊瑚共生體之共生藻群聚多樣性與熱逆境生理 Symbiodinium diversity and physiological responses to thermal stress on Porites holobionts in Taiwan. |
指導教授: |
陳昭倫
Chen, Chao-Lun 林思民 Lin, Si-Min |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 微孔屬珊瑚 、熱逆境生理 、變性梯度電泳 、最大光合作用效率 |
英文關鍵詞: | Porites, thermal physiology, Symbiodinium composition, coral holobionts |
論文種類: | 學術論文 |
相關次數: | 點閱:167 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱帶與亞熱帶造礁珊瑚與其體內共生藻所組成的“共生體”,其生理極限溫度約在攝氏28~30度左右,當海表面溫度升高攝氏0.5-1度將對珊瑚共生體造成生理上的熱逆境,熱逆境持續的結果將造成珊瑚產生“白化”現象。面對氣候變遷可能在本世紀末引以海水溫度升高攝氏1.8~4度,探討生活不同“溫度背景”的珊瑚共生體在熱逆境下如何調適或適應作出反應及其可能的機制,是珊瑚礁保育與永續重要的課題。本論文以在不同海域溫度背景的團塊型微孔珊瑚共生體為對象探討共生藻的多樣性,以及是否展現不同的熱逆境生理反應能力。將台灣南部恆春核三廠出水口(年均溫攝氏27.5 ± 1.7度)與北部鼻頭角(年均溫攝氏23.8 ± 3.82度)的團塊型微孔珊瑚共生體採回實驗室,已變性梯度電泳與核苷酸序列定序分析微孔珊瑚體內共生藻型的多樣性,並以水缸實驗探討原生溫度背景相異的微孔珊瑚共生體對熱逆境的反應。共生藻多樣性的調查顯示,在37個微孔珊瑚樣本中可鑑定出C15型、C55、C55-1與六種未命名的共生藻單型,而微孔珊瑚體內共生藻型在臺灣南北的地理分佈上有顯著差異,南部以C15原型為主,而北部多為未知的新共生藻單型為主。以共生藻最大光合作用效率量測微孔珊瑚共生體對熱逆境的反應結果顯示,鼻頭角的微孔珊瑚對於熱逆境的耐受度顯著優於核三廠出水口的群體。分析共生藻密度及葉綠素濃度隨時間的變動顯示,鼻頭角的微孔珊瑚共生體的葉綠素濃度隨著時間而增加,但共生藻密度下降,相反的,核三廠出水口的微孔珊瑚共生體體內共生藻密度隨時間而增加,葉綠素濃度並改變。綜合以上的結果顯示,團塊微孔珊瑚(P. lobata)在台灣南北海域不同的背景溫度下已發展出與不同型共生藻的共生能力,而且其對於熱逆境的反應策略也有所不同。此外,由於珊瑚宿主及環境不同,核三廠出水口三米水深與七米水深的微孔珊瑚共生體在光合作用效率上存在著本質上的差異,但其對於熱逆境的反應是相同的。總結本論文從分子與生理證據皆證實,即使是高度共生藻藻型專一性的團塊微孔珊瑚在小尺度的地理差異上也發現因適應不同的環境溫度導致共生藻組成族群之差異,而不同共生藻型對於熱逆境的光合生理也發展出不同的策略。
Corals and their symbiotic algae (genus Symbiodinium), collectively known as coral holobionts, live close to their physiologically-limit of sea surface temperature (SST) between 28 0C to 30 0C in the tropical and subtropical water. Increasing of 0.5-1 0C above the sea surface temperature (SST) will cause physiological stress of coral holobionts and, as the consequence, breakdown of symbiotic relationship (also known as “bleaching”). Understanding how coral holobionts with different SST “background” respond to the thermal stress is the key to identify the strategies of future survival of coral holobionts and function of coral reef ecosystem under the impact of climate change. In this study first conducted Symbiodinium diversity surveys of Porites corals from the Bietou (BT) in the northern Taiwan and Nuclear power plant outlet (OL) of Kenting National Park, in southern Taiwan, where yearly mean SST 23.8 ± 3.8 0C and 27.5 ± 1.7 0C, respectively. 37 coral samples were examined, C15, C55, C55-1, and six C15-related new Symbiodinium types were identified in Porites. A significant difference in Symbiodinium type compositions was found in Porites between BT and NPP-OL with the six C15-related types dominant in BT. Analysis of the maximum quantum yield (Fv / Fm) in Porites exposed to different temperature treatments in the tanks showed that Porites of NPP-OL was more sensitive to the thermal treatments than those of the BT during thermal stress. In addition, NPP-OL Porites collected from 7 m displayed a significantly higher Fv / Fm than those from 3 m, which might due to difference of the host species. Analysis of Symbiodinium density and chlorophyll pigments concentration showed that BT population displayed higher concentration of chlorophyll pigments than OL population. However, NPP-OL population increased Symbiodinium density instead of chlorophyll pigments when facing thermal stress. Results from this thesis suggested that Porites living in different thermal background could associate with different Symbiodinium C15-related types. Meanwhile, different C15-related types might have variety of photosynthesis responses in assisting coral hosts to survive under the thermal stress caused by rising sea surface temperature.
1.Roberts, C.M., et al., Marine biodiversity hotspots and conservation priorities for tropical reefs. Science, 2002. 295(5558): p. 1280-4.
2.Stanley Jr, G.D., The evolution of modern corals and their early history. Earth-Science Reviews, 2003. 60(3): p. 195-225.
3.Muscatine, L. and J.W. Porter, Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience, 1977: p. 454-460.
4.Brown, B., Coral bleaching: causes and consequences. Coral reefs, 1997. 16(1): p. S129-S138.
5.Hoegh-Guldberg, O., Climate change, coral bleaching and the future of the world's coral reefs. Marine and freshwater research, 1999. 50(8): p. 839-866.
6.Solomon, S., et al., Atmospheric composition, irreversible climate change, and mitigation policy, in Climate Science for Serving Society. 2013, Springer. p. 415-436.
7.Thornhill, D.J., et al., Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Marine Biology, 2005. 148(4): p. 711-722.
8.Pochon, X., et al., Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Molecular phylogenetics and evolution, 2006. 38(1): p. 20-30.
9.Berkelmans, R. and M.J.H. van Oppen, The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proceedings of the Royal Society B: Biological Sciences, 2006. 273(1599): p. 2305-2312.
10.Jones, A. and R. Berkelmans, Potential Costs of Acclimatization to a Warmer Climate: Growth of a Reef Coral with Heat Tolerant vs. Sensitive Symbiont Types. PLOS ONE, 2010. 5(5).
11.Abrego, D., et al., Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc Biol Sci, 2008. 275(1648): p. 2273-82.
12.Rowan, R., Coral bleaching: thermal adaptation in reef coral symbionts. Nature, 2004. 430(7001): p. 742-742.
13.Thornhill, D.J., et al., Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Marine Biology, 2006. 148(4): p. 711-722.
14.Jones, A.M., et al., A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proceedings of the Royal Society B: Biological Sciences, 2008. 275(1641): p. 1359-1365.
15.Buddemeier RW, F.D., Coral bleaching as an adaptive mechanism: a testable hypothesis. BioSciene, 1993. 43: p. 320-326.
16.Van Oppen, M.J. and R.D. Gates, Conservation genetics and the resilience of reef‐building corals. Molecular Ecology, 2006. 15(13): p. 3863-3883.
17.Silverstein, R.N., A.M.S. Correa, and A.C. Baker, Specificity is rarely absolute in coral–algal symbiosis: implications for coral response to climate change. Proceedings of the Royal Society B: Biological Sciences, 2012. 279(1738): p. 2609-2618.
18.Byler, K.A., et al., Multiple Symbiont Acquisition Strategies as an Adaptive Mechanism in the Coral Stylophora pistillata. PLOS ONE, 2013. 8(3): p. e59596.
19.Loya, et al., Coral bleaching: the winners and the losers. Ecology Letters, 2001. 4(2): p. 122-131.
20.Fisher, P.L., M.K. Malme, and S. Dove, The effect of temperature stress on coral–Symbiodinium associations containing distinct symbiont types. Coral Reefs, 2012. 31(2): p. 473-485.
21.Ulstrup, K.E., et al., Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxanthellae. Marine Ecology Progress Series, 2006. 314: p. 135-148.
22.Marshall, P. and A. Baird, Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral reefs, 2000. 19(2): p. 155-163.
23.Keshavmurthy, S., et al., Can resistant coral-Symbiodinium associations enable coral communities to survive climate change? A study of a site exposed to long-term hot water input. PeerJ, 2014. 2: p. e327.
24.LaJeunesse, T.C., Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. Journal of Phycology, 2001. 37(5): p. 866-880.
25.Sampayo, E., S. Dove, and T. LaJeunesse, Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Molecular ecology, 2009. 18(3): p. 500-519.
26.Ferrara, G.B., et al., The assessment of DNA from marine organisms via a modified salting-out protocol. Cellular & Molecular Biology Letters, 2006. 11(2): p. 155-60.
27.LaJeunesse, T. and R. Trench, Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). The Biological Bulletin, 2000. 199(2): p. 126-134.
28.Coleman, A.W., A. Suarez, and L.J. Goff, Molecular delineation of species and syngens in volvocacean green algae (chlorophyta) 1. Journal of phycology, 1994. 30(1): p. 80-90.
29.Don, R., et al., 'Touchdown'PCR to circumvent spurious priming during gene amplification. Nucleic Acids Research, 1991. 19(14): p. 4008.
30.Clement M, P. D, and C. K, TCS: a computer program to estimate gene genealogies. Molecular Ecology, 2000. 9(10): p. 1657-1660.
31.Jeffrey, S.t. and G. Humphrey, New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz, 1975. 167(19): p. 1-194.
32.Barshis, D., et al., Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity? Molecular ecology, 2010. 19(8): p. 1705-1720.
33.Hillis, D.M. and M.T. Dixon, Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology, 1991: p. 411-453.
34.AC, B., et al., Corals' adaptive response to climate change. Nature, 2004. 430: p. 741-741
35.LaJeunesse, T.C., et al., Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance. Proceedings of the Royal Society B: Biological Sciences, 2010: p. rspb20100385.
36.LaJeunesse, T., Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Marine Biology, 2002. 141(2): p. 387-400.
37.Fabricius, K., et al., Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Molecular ecology, 2004. 13(8): p. 2445-2458.
38.Warner, M.E., et al., The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: potential implications for coral bleaching. Limnology and Oceanography, 2006. 51(4): p. 1887-1897.
39.Richmond, R.H. and C.L. Hunter, Reproduction and recruitment of corals: Comparisons among the Caribbean, the Tropical Pacific, and the Red Sea. Marine ecology progress series. Oldendorf, 1990. 60(1): p. 185-203.
40.Baker, A.C., Flexibility and Specificity in Coral-Algal Symbiosis: Diversity, Ecology, and Biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics, 2003. 34: p. 661-689.
41.Lajeunesse, T.C., "Species" radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol, 2005. 22(3): p. 570-81.
42.LaJeunesse, T.C., et al., Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. Journal of Biogeography, 2010. 37(5): p. 785-800.
43.LaJeunesse, T.C. and D.J. Thornhill, Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One, 2011. 6(12): p. e29013.
44.Bongaerts, P., et al., Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC evolutionary biology, 2011. 11(1): p. 303.
45.Smith, R.T., Specificity, stability and comparative physiology of coral-Symbiodinium mutualisms: Evaluating the potential for acclimation and/or adaptation in reef corals. 2008, Florida International University.
46.Howells, E.J., et al., Coral thermal tolerance shaped by local adaptation of photosymbionts. Nature Climate Change, 2011. 2(2): p. 116-120.
47.Meyer, J.R., et al., Prey evolution on the time scale of predator–prey dynamics revealed by allele-specific quantitative PCR. Proceedings of the National Academy of Sciences, 2006. 103(28): p. 10690-10695.
48.Costas, E., A. Flores-Moya, and V. Lopez-Rodas, Rapid adaptation of phytoplankters to geothermal waters is achieved by single mutations: were extreme environments 'Noah's Arks' for photosynthesizers during the Neoproterozoic 'snowball Earth'? New Phytol, 2008. 180(4): p. 922-32.
49.Wilkerson, F., D. Kobayashi, and L. Muscatine, Mitotic index and size of symbiotic algae in Caribbean reef corals. Coral Reefs, 1988. 7(1): p. 29-36.
50.Drew, E.A., The biology and physiology of alga invertebrate symbioses. Part 2. The density of symbiotic algal cells in a number of hermatypic hard corals and alcyonarians from various depths. J. Exp. Mar. Biol. Ecol, 1972. 9: p. 71-75.
51.Correa, A. and A.C. Baker, Disaster taxa in microbially mediated metazoans: how endosymbionts and environmental catastrophes influence the adaptive capacity of reef corals. Global change biology, 2011. 17(1): p. 68-75.
52.Correa, A.M.S. and A.C. Baker, Disaster taxa in microbially mediated metazoans: how endosymbionts and environmental catastrophes influence the adaptive capacity of reef corals. Global Change Biology, 2011. 17(1): p. 68-75.
53.Middlebrook, R., O. Hoegh-Guldberg, and W. Leggat, The effect of thermal history on the susceptibility of reef-building corals to thermal stress. Journal of Experimental Biology, 2008. 211(7): p. 1050-1056.
54.Oliver, T. and S. Palumbi, Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs, 2011. 30(2): p. 429-440.
55.Carilli, J., S.D. Donner, and A.C. Hartmann, Historical Temperature Variability Affects Coral Response to Heat Stress. PLoS ONE 2012. 7(3).
56.Castillo, K.D. and B.S.T. Helmuth, Influence of thermal history on the response of Montastraea annularis to short-term temperature exposure. Marine Biology, 2005. 148(2): p. 261-270.
57.Mayfield, A.B., T.Y. Fan, and C.S. Chen, Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment. Coral Reefs, 2013. 32(4): p. 909-921.
58.Hsu, C.-M., et al., Temporal and Spatial Variations in Symbiont Communities of Catch Bowl Coral Isopora palifera (Scleractinia: Acroporidae) on Reefs in Kenting National Park, Taiwan. Zoological Studies, 2012. 51(8): p. 1343-1353.
59.Jan, S. and C.T.A. Chen, Potential biogeochemical effects from vigorous internal tides generated in Luzon Strait: a case study at the southernmost coast of Taiwan. Journal of Geophysical Research: Oceans (1978–2012), 2009. 114(C4).
60.L. D'Croz and J.L. Mate, Experimental responses to elevated water temperature in genotypes of the reef coral Pocillopora damicornis from upwelling and non-upwelling environments in Panama. Coral Reefs, 2004. 23(4): p. 473-483.
61.Steele, R.D., Light intensity as a factor in the regulation of the density of symbiotic zooxanthellae in Aiptasia tagetes (Coelenterata, Anthozoa). Journal of Zoology, 1976. 179(3): p. 387-405.
62.Titlyanov, E., et al., Photo-acclimation dynamics of the coral Stylophora pistillata to low and extremely low light. Journal of experimental marine biology and ecology, 2001. 263(2): p. 211-225.