簡易檢索 / 詳目顯示

研究生: 劉韋宏
Wei-Hung Liu
論文名稱: 記憶體之3D立體控制單元與高介電常數之矽鍺電晶體
The Switch Devices of 3D IC for Memory and High Dielectric Constant for SiGe Transistors
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 92
中文關鍵詞: 雙極性記憶體理想因子臨界電壓次臨界擺幅雙極性二極體
英文關鍵詞: RRAM, ideal factor, threshold voltage,, subthreshold swing, bi-directional diode
論文種類: 學術論文
相關次數: 點閱:160下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電子產品朝向輕薄短小、高效能發展已成趨勢,高度的系統整合將無可避免;具體積小、整合度高、耗電量低、成本低等特性的立體堆疊晶片(3D IC)將成趨勢。
    第二章節的目的在單晶片矽上利用連續成長製程完成適用於 3D 記憶體之switch技術評估與試製,並輔以 TCAD 模擬配合,以利於最佳化設計。在製程驗證方面,目前垂直型多晶矽 p-n diode switch 完成驗證的電性表現,如理想因子 (ideal factor) η約1.2~1.9,電流密度(J)在1.8V時約1.5x102 A/cm2,且 on/off ratio 也達到 ~107 ,已可供記憶體switch使用。
    而為能適用於雙極性記憶體 (如RRAM) 的使用,則因其寫入及抹除屬不同極性,故需發展雙向型控制單元,類似雙極性載子電晶體 (BJT) 之n/p/n或p/n/p結構,第三章節考慮採用n/p/n接面之雙極性二極體 ( bi-directional diode )。
    第四章研究架方向為氮化鈦 (TiN) 金屬閘極搭配 HfSiOx介電層在不同晶格方向 (crystal orientation) 之N型場效電晶體 (FET) 元件之製作。並以臨界電壓 (threshold voltage, VT) 、次臨界擺幅 (subthreshold swing, S.S.) 、飽和電流 (saturation current, IDsat) 、漏電流 (leakage current) 等作為元件特性評估之依據。

    Now the compact and high-performance electronic products are world-widely used in our life. The integration of system is significant for novel electronics. The trend of electronics is the 3D stack integration circuit (3D IC) which has a lot of advantage: compact, low power, low cost, and high compatibility for CMOS process.
    In chapter 2, the switch devices of 3D IC were fabricated by a continuous process on single-crystal silicon wafers. In order to improve the design of device, we used TCAD simulation for optimizing results of the device. In the experiments, the electrical characterization and measurement results of vertical poly-Si p-n diode switch are almost equal to the results of simulation, and the ideal factor η is 1.2~1.9 of this device. When the device is biased at 1.8 V, the current density is 1.5x102 A/cm2, and the on/ off ratio reaches ~107.
    In chapter 3, in order to improve the compatibility with the bi-polar memory device (ex: RRAM), the n/ p/ n junctions bi-directional diode is used as a bi-direction control unit.
    In chapter 4, we fabricated the NFETs with metal gate (TiN) and the high-k dielectric layer (HfSiOx) in the different crystal orientations. Therefore, the threshold voltage VT, sub-threshold swing S.S, saturation current IDsat, and the leakage current were measured totally for the characterization of the above NFETs.

    Publications..........................................Ⅰ 中文摘要………………………………………………………..Ⅱ 英文摘要………………………………………………………..Ⅲ 誌謝………………………………………………………………Ⅳ 目錄………………………………………………………………Ⅵ 第一章 簡介……………………………………………………1 1.1 立體堆疊晶片(3D IC) 之簡介與動機 ……………1 1.2 本研究之重點內容……………………………………4 第二章 垂直多晶矽p-n二極體設計與模擬......................6 2.1 元件製作流程與設計………………………………...6 2.2 實驗電性之量測與分析…………………………….11 2.3 TCAD模擬…………………………………………..24 2.4 專利地圖……………………………………………..33 2.5 結論…………………………………………………..35 第三章 垂直多晶矽n/p/n bi-directional diode設計........37 3.1 TCAD模擬…………………………………………..38 3.2 元件製作流程與設計………………………………39 3.3 實驗電性之量測與分析……………………………44 3.4 結論…………………………………………………..49 第四章 氮化鈦(TiN)金屬閘極搭配HfSiOx介電層在不同晶格方向之N型場效電晶體(FET)元件之研製...........................50 4.1 元件製作流程與設計………………………………51 4.2 實驗電性之量測與分析……………………………59 4.3 電性整理分析比較…………………………………81 4.4 結論…………………………………………………..85 第五章 總結論與未來工作 …………………………………..88 參考文獻………………………………………………….........90

    [1] F. Pellizzer, et al., “A 90nm Phase Change Memory Technology for Stand-Alone Non-Volatile Memory Applications,” Symp. VLSI Tech. Digest of Tech Papers, pp. 122-123, 2006.
    [2] F. Pellizzer, et al., “Novel Trench Phase-Change Memory Cell for Embedded and Stand-Alone Non-Volatile Memory Applications,” Symp. VLSI Tech. Digest of Tech Papers, pp. 18-19, 2004.
    [3] G. Atwood, et al., “Current Status of Chalcogenide Phase Change Memory,” DRC, pp. 29-33, 2005.
    [4] J.H. Oh, et al., “Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm,” Technology IEDM Tech. Dig., pp. 49-52, 2006.
    [5] D.H. Kang, et al., “Novel Heat Dissipating Cell Scheme for Improving a Reset Distribution in a 512M Phase-change Random Access Memory (PRAM),” Symp. VLSI Tech. Digest of Tech Papers, pp. 96-97, 2007.
    [6] Y. Sasago, et al., “Cross-Point Phase Change Memory with 4F2 Cell Size Driven by Low-Contact-Resistivity Poly-Si Diode,” Symp. VLSI Tech. Digest of Tech Papers, pp. 24-25, 2009.
    [7] A. T. Voutsas, et al., “Advances in Laser Annealing Technology for Poly-Si Material Engineering and Ultra-High-Performance Device Fabrication,” 10th IEEE International Conference on Advanced Thermal Processing of Semiconductors – RTP, pp. 183-191, 2002.
    [8] C. F. Cheng, et al., “Large-Grain Polysilicon Crystallization
    Enhancement Using Pulsed RTA,” IEEE Electron Device Letters, vol. 25, no. 8, pp. 553-555, august 2004.
    [9] S. Brad Herne, et al., US. Patent No: 7,285,464, 2007.
    [10] Yuan Zhang, et al., “An Integrated Phase Change Memory Cell With Ge Nanowire Diode For Cross-Point Memory,” Symp. VLSI Tech. Digest of Tech Papers, pp. 98-99, 2007.
    [11] Myoung-Jae Lee, et al., “2-stack 1D-1R Cross-point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications,” IEDM Tech. Dig., pp. 771-774, 2007.
    [12] H.Takakura, et al., “Solar Energy Materials & Solar Cells,” pp. 479-487, 2004.
    [13] H. Taski, W.Y. Kim, M. Hallerdt, M. Konagai, and K. Takahashi J. Appl. Phys. 63(2), 15 January 1988.
    [14] Tyler A. Lowrey, US. Patent No: 7,247,876, 2007
    [15] Nicholas H. Tripsas, et al., US. Patent No: 7,391,064, 2008
    [16] S. Brad Herner, et al., US. Patent No: 7,285,464, 2007
    [17] Sang-Jin PARK, et al.,US. Pub. No: 2008/0200014, 2008
    [18] M. Yang, et al. “High Performance CMOS Fabricated on Hybrid Substrate With Different Crystal Orientations,” IEDM Tech. Dig., pp. 453-456, 2003.
    [19] J.R. Hwang, et al. “Symmetrical 45nm PMOS on (110) Substrate with Excellent S/D Extension Distribution and Mobility Enhancement,” VLSI Tech. Digest of Tech Papers, pp. 90-91, 2004.
    [20] Ming-Jui Yang, et al. “Electrical Properties of Low-Temperature- Compatible P-Channel Polycrystalline -Silicon TFTs Using High-k Gate Dielectrics,” IEEE Transactions on Electron Devices, vol. 55, no. 4, April 2008.
    [21] Q.W. Ren, et al. “Low-Ohmic Contacts by Excimer Laser Annealing of Implanted Polysilicon,” Solid-State and Integrated Circuit Technology, pp. 102-105, 1998.
    [22] G. C. Jain, et al., “Dopant Profile Analysis of Boron in Solar Grade Poly- and Single- Crystalline Silicon,” Appl. Phys. Lett. 38 (10), 15 pp. 815-817, May 1981.
    [23] 莊達人, VLSI 製造技術, 高立圖書出版, p41-42, p713-716, 2005.
    [24] J. D. Plummer, M. D. Deal, and P. B. Griffin, “Silicon VLSI Technology: fundamentals, practice and modeling,” Ch. 9-11, Prentice Hall.
    [25] Michael Quirk, Julian Serda, “Semiconductor Manufacturing Technology,” Ch. 9-11, Ch. 16-17, Prentice Hall.

    無法下載圖示 本全文未授權公開
    QR CODE