研究生: |
洪佳煥 |
---|---|
論文名稱: |
增補β-丙胺酸對3分鐘腳踏車衰竭測驗生理反應之影響 Effect of β-alanine supplementation on the physiological responses during 3-min all-out cycling test |
指導教授: | 鄭景峰 |
學位類別: |
碩士 Master |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 運動增補劑 、肌肽 、緩衝能力 、臨界負荷 |
英文關鍵詞: | sports aids, carnosine, buffer capacity, critical power |
論文種類: | 學術論文 |
相關次數: | 點閱:324 下載:23 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:本研究主要探討增補β-丙胺酸對優秀運動員有氧與無氧表現之影響。方法:將24名高中以上男性優秀運動員(年齡為18.7 ± 1.6歲、身高為176.0 ± 4.0公分、體重為68.7 ± 5.9公斤),以隨機分組方式分為β-丙胺酸組(6.4 g•d-1的β-丙胺酸)與安慰劑組(6.4 g•d-1的纖維素)。在4週增補的前後,受試者進行漸增負荷運動測驗及3分鐘腳踏車衰竭測驗,以評估增補β-丙胺酸在生理反應與運動表現之影響,例如,漸增負荷運動測驗的最大攝氧量 (VO2max) 、換氣閾值 (VT) ,以及3分鐘腳踏車衰竭測驗的攝氧峰值 (VO2peak) 、結束功率 (EP) 及高於結束功率之總作功 (WEP)。並於3分鐘腳踏車衰竭測驗時採集血液,以分析血乳酸與血液pH值。結果:增補前與增補後的所有生理變項與運動表現,在兩組之間皆無顯著差異。β-丙胺酸組在增補後的最大攝氧量(增補前 vs. 增補後,55.8 ± 6.8 vs. 56.6 ± 5.5 ml•min-1•kg-1)、換氣閾值(增補前 vs. 增補後,34.1 ± 3.7 vs. 35.5 ± 4.8 ml•min-1•kg-1)、攝氧峰值(增補前 vs. 增補後,59.3 ± 7.2 vs. 57.7 ± 7.1 ml•min-1•kg-1),結束功率(增補前 vs. 增補後,257.8 ± 25.0 vs. 258.6 ± 30.7 W)與高於結束功率之總作功(增補前 vs. 增補後,10.0 ± 3.4 vs. 10.5 ± 2.00 kJ),皆未達顯著差異。然而,在增補β-丙胺酸後的血乳酸值(增補前 vs. 增補後,11.0 ± 2.8 vs. 9.3 ± 2.0 mmol•L-1)與血液pH值(增補前 vs. 增補後,7.17 ± 0.06 vs. 7.12 ± 0.05)則顯著減少。安慰劑組的所有生理變項與運動表現在增補前與增補後之間皆無顯著差異。結論:增補β-丙胺酸可能無法改善優秀運動員的有氧與無氧表現,但是能減少在3分鐘腳踏車衰竭測驗時的代謝壓力。
Purpose: To investigate the effect of β-alanine supplement on the aerobic and anaerobic performance in elite athletes. Methods: Twenty-four athletes were recruited and randomly assigned to the β-alanine (6.4 g•d-1) or placebo (6.4 g•d-1 of cellulose) group. Before and after a 4 weeks supplement, participants performed the incremental cycling test and 3-min all-out cycling test to determine the effects of β-alanine on the physiological responses and performance, i.e., maximal oxygen uptake (VO2max) and ventilatory threshold (VT), peak oxygen uptake (VO2peak), end test power (EP), and work done above the EP (WEP). The blood samples were obtained during the 3-min all-out cycling test to measure the blood lactate and pH concentrations. Results: No significant differences were found on the all physiological variables or performance at pre- or post-supplementation between two groups. In the β-alanine group, no significant differences were found on the VO2max (pre vs. post, 55.8 ± 6.8 vs. 56.6 ± 5.5 ml•min-1•kg-1), VT (pre vs. post, 34.1 ± 3.7 vs. 35.5 ± 4.8 ml•min-1•kg-1), VO2peak (pre vs. post, 59.3 ± 7.2 vs. 57.7 ± 7.1 ml•min-1•kg-1), EP (pre vs. post, 257.8 ± 25.0 vs. 258.6 ± 30.7 W) and WEP (pre vs. post, 10.0 ± 3.4 vs. 10.5 ± 2.0 kJ) after supplementation. However, β-alanine supplementation significantly decreased blood lactate (pre vs. post, 11.0 ± 2.8 vs. 9.3 ± 2.0 mmol•L-1) and pH levels (pre vs. post, 7.17 ± 0.06 vs. 7.12 ± 0.05). There were no significant differences on the all physiological variables or performance in the placebo group between pre- and post-supplementation. Conclusion: β-alanine supplement might not improve the aerobic and anaerobic performance, but reduce the metabolic stress during 3-min all-out test in elite athletes.
王順正、王鶴森、林正常(1995)。漸增強度運動測驗之臨界負荷與無氧閾值的關係研究。體育學報,19,145-156。
朱啟娥(2010)。血氨對運動應答的運動規律及應用方法研究。咸寧學院學報,30(6),96-98。
洪佳煥、鄭景峰(2012)。增補β-丙胺酸對運動表現影響之探討。中華體育季刊,26,1-8。
楊懿珊、鄭景峰(2010)。臨界負荷檢測方法之探討與應用。運動教練科學,19,11-24。
楊懿珊(2010)。以3分鐘划船衰竭測驗判定臨界負荷(未出版碩士論文)。國立台灣師範大學,台北市。
Abe, H. (2000). Role of histidine-related compounds as intracellular porton buffering constituents in vertebrate muscle. Biochemistry (Mascow), 65(7), 757-765.
Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Impaired calcium release during fatigue. Journal of Applied Physiology, 104, 296-305.
Artioli, G. G., Gualano, B., Smith, A., Stout, J., & Lancha, A. H. Jr. (2010). Role of beta-alanine supplementation on muscle carnosine and exercise performance. Medicine and Science in Sports and Exercise, 42, 1162-1173.
Baguet, A., Reyngoudt, H., Pottier, A., Everaert, I., Callens, S., Achten, E., & Derave, W. (2009). Carnosine loading and washout in human skeletal muscles. Journal of Applied Physiology, 106, 837-842.
Baguet, A., Bourgois, J., Vanhee, L., Achten, E., & Derave, W. (2010). Important role of muscle carnosine in rowing performance. Journal of Applied Physiology, 109, 1096-1101.
Baguet, A., Koppo, K., Pottier, A., & Derave, W. (2010). Beta-alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. European Journal of Applied Physiology, 108, 495-503.
Bate-Smith, E. C. (1938). The buffering of muscle in rigor, protein, phosphate and carnosine. The Journal of Physiology, 92, 336-343.
Bellinger, P., Howe, S., Shing, C., & Fell. (2012). The Effect of combined beta-alanine and NaHCO3 supplementation on cycling performance. Medicine and Science in Sports and Exercise. in press. Epub ahead of print retrieved February 9, 2012. doi: 10.1249/MSS.0b013e31824cc08d.
Beaver, W. L., Wasserman, K., & Whipp, B. J. (1986). A new method for detecting anaerobic threshold by gas exchange. Journal of Applied Physiology, 60, 2020-2027.
Broch-Lips, M., Overgaard, K., Praetorius, H. A., & Nielsen, O. B. (2007). Effects of extracellular HCO3 on fatigue, pHi, and K+ efflux in rat skeletal muscles. Journal of Applied Physiology, 103, 494-503.
Burnley, M., Doust, J. H., & Vanhatalo, A. (2006). A 3 min all-out test to determine peak oxygen uptake and maximal steady state. Medicine and Science in Sports and Exercise, 38, 1995-2003.
Burnley, M., & Jones, A. M. (2007). Oxygen uptake kinetics as a determinant of sports performance. European Journal of Sport Science, 7(2), 63-79.
Davey, L. (1960). The significance of carnosine and ansersine in striated skeletal muscle. Archives Biochemistry and Biophysics, 89, 303-308.
Derave, W., Ozdemir, M. S., Harris, R. C., Pottier, A., Reyngoudt, H., Koppo, K., … Achten, E. (2007). Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. Journal of Applied Physiology, 103, 1736-1743.
Derave, W., Everaert, I., Beekman, S., & Bauget, A. (2010). Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Medicine, 40(3), 247-263.
Dutka, L., & Lamb G. (2004). Effect of carnosine on excitation-contraction coupling in mechanically-skinned rat skeletal muscle. Journal of Muscle Research and Cell Motility, 25(3), 203-213.
Gladden, L. (2006). Lactate metabolism: A new paradigm for the third millennium. The Jourmal of Physiology, 558, 5-30.
Harris, R. C., Tallon, M. J., Dunnett, M., Boobis, L., Coakley, J., Kim, H. J., … Wise, J. A. (2006). The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids, 30, 279-289.
Hill, C. A., Harris, R. C., Kim, H. J., Harris, B. D., Sale, C., Boobis, L. H., … Wise, J. A. (2007). Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids, 32, 225-233.
Hoffman, J. R., Ratamess, N. A., Faigenbaum, A. D., Ross, R., Kang, J., Stout, J. R., & Wise, J. A. (2008). Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutrition Research, 28, 31-35.
Jagim, A., Wright, G., Brice, A., & Doberstein, S. (2012). Effects of beta-alanine supplementation on sprint endurance. Journal of Strength and Conditioning Research. in press. Epub ahead of print retrieved April 3, 2012. doi: 10.1519/JSC.0b013e318256bedc.
Jones, A. M., Wilkerson, D. P., DiMenna, F., Fulford, J., & Poole, D. C. (2008). Muscle metabolic responses to exercise above and below the "critical power" assessed using 31P-MRS. American Journal of Physiology, 294(2), 585-593.
Jordan, T., Lukaszuk, J., Misic, M., & Umoren, J. (2010). Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA) during treadmill running: Pre/post 2 treatment experimental design. Journal of the International Society of Sports Nutrition, 7(20), 1-7.
Kern, B. D., & Robinson, T. (2011). Effects of beta-alanine supplementation on performance and body composition in collegiate wrestlers and football players. Journal of Strength and Conditioning Research, 25(7), 1804-1815.
Kendrick, I. P., Harris, R. C., Kim, H. J., Kim, C. K., Dang, V. H., Lam, T. Q., ... Wise, J. A. (2008). The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids, 34, 546-554.
Kendrick, I. P., Kim, H. J., Harris, R. C., Kim, C. K., Dang, V. H., Lam, … Wise, J. A. (2009). The effects of 4 weeks beta-alanine supplementation and isokinetic training on carnosine concentrations in type I and II human skeletal muscle fibres. European Journal of Sport Science, 106, 131-138.
Lamont, C., & Miller, J. (1992). Calcium sensitizing action of carnosine and other endogenous imidazoles in chemically skinned striated muscle. Journal of Physiology, 454, 421-434.
Lowenstein, J. (1972). Ammonia production in muscle and other tissues:the purine nucleotide cycle. Physiology Review, 52, 382-414.
Mannion, F., Jakeman, M., & Dunnett, M (1992). Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans. European Journal of Applied Physiology and Accoupational Physiology, 64 (1), 47-50.
Monod, H., & Scherrer, J. (1965). The work capacity of synergic muscular group. Ergonomics, 8, 329-338.
Moritani, T., Nagata, A., deVries, H. A., & Muro, M. (1981). Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics, 24(5), 339-350.
Nebelsick-Gullett, L. J., Housh, T. J., Johnson, G. O., & Bauge, S. M. (1988). A comparison between methods of measuring anaerobic work capacity. Ergonomics, 31(10), 413-419.
Powers, S., & Howley, E. (2002). Exercise physiology: Theory and application to fitness and performance (4th ed). Boston: McGraw-Hill.
Sale, C., Saunders, B., & Harris, R. C. (2010). Effects of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids, 39, 321-333.
Sale, C., Saunders, B., Hudson, S., Wise, J., Harris R., & Sunderland, C. (2011). Effects of beta-alanine plus sodium bicarbonate on high intensity cycling capacity. Medicine and Science in Sports and Exercise, 43, 1972-1978.
Saunders, B., Sale, C., Harris, R., & Sunderland, C. (2012). Effect of beta-alanine supplementation on repeated sprint performance during the Loughborough intermittent shuttle test. Amino Acids, 43(1), 39-47.
Stout, J. R., Cramer, J. T., Zoeller, R. F., Torok, D., Costa, P., Hoffman, J. R., … O’Kroy, J. (2007). Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilator threshold in women. Amino Acids, 32, 381-386.
Sweeney, K. M., Wright, G. A., Brice, A. G., & Doberstein, S. T. (2010). The effect of beta-alanine supplementation on power performance during repeated sprint activity. Journal of Strength and Conditioning Research, 24(1), 79-87.
Stellingwerf, T., Anwander, H., Rgger, A., Buehler, T., Kreis, R., Decombaz, J., & Boesch, C. (2012). Effect of two β-alanine dosing protocols on muscle carnosine synthesis and washout. Amino Acid, 42(6), 2461-2476.
Vanhatalo, A., Doust, J. H., & Burnley, M. (2007). Determination of critical power using a 3 min all-out cycling test. Medicine and Science in Sports and Exercise, 39, 548-555.
Van Thienen, R., Van Proeyen, K., Vanden Eynde, B., Puypo, J., Lefere, T., & Hespel, P. (2009). Beta-alanine improves sprint performance in endurance cycling. Medicine and Science in Sports and Exercise, 41, 898-903.
Zoeller, R. F., Stout, J. R., O'Kroy, J. A., Torok, D. J., & Mielke, M. (2007). Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino Acid, 33, 505-510.