簡易檢索 / 詳目顯示

研究生: 李昀叡
Li, Yun-Jui
論文名稱: 單次有氧運動對延遲晚餐進食下血糖調控之影響
Effect of Acute Aerobic Exercise Following Delayed Dinner Intake on Next Morning Glycemic Responses
指導教授: 陳勇志
Chen, Yung-Chih
口試委員: 王鶴森
Wang, Ho-Seng
巫錦霖
Wu, Ching-Lin
陳勇志
Chen, Yung-Chih
口試日期: 2024/01/15
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 49
中文關鍵詞: 血糖代謝晚餐進食時機葡萄糖耐受度受質氧化
英文關鍵詞: glucose metabolism, dinner timing, glucose tolerance, substrate oxidation
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400284
論文種類: 學術論文
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 2 第三節 研究假設 2 第四節 名詞操作性定義 2 第五節 研究限制 3 第六節 研究重要性 3 第貳章 文獻探討 4 第一節 晚餐進食時間對血糖調控及其可能影響機制之探討 4 第二節 午後進行單次有氧運動對隔天血糖調控的影響 9 第三節 本章總結 13 第參章 研究方法與步驟 14 第一節 研究參與者 14 第二節 實驗時間與地點 16 第三節 實驗流程 16 第四節 實驗方法與步驟 18 第五節 統計分析 22 第肆章 結果 23 第一節 實驗日之身體活動情形與安靜生理代謝指標 23 第二節 運動過程之生理代謝指標 24 第三節 葡萄糖耐受度測驗過程中血液指標變化 24 第四節 葡萄糖耐受度測驗過程中能量代謝變化 26 第伍章 討論與建議 28 第一節 葡萄糖耐受度測驗過程中血糖及胰島素代謝變化 28 第二節 葡萄糖耐受度測驗過程之能量代謝 32 第三節 結論與建議 35 參考文獻 36 附錄 47

    衛生福利部國民健康署 (2018)。每日飲食指南手冊

    Abdul-Ghani, M. A., Matsuda, M., Balas, B., & DeFronzo, R. A. (2007). Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care, 30(1), 89–94.

    Allison, K. C., Hopkins, C. M., Ruggieri, M., Spaeth, A. M., Ahima, R. S., Zhang, Z., Taylor, D. M., & Goel, N. (2021). Prolonged, Controlled Daytime versus Delayed Eating Impacts Weight and Metabolism. Current Biology, 31(3), 650-657.

    Almoosawi, S., Winter, J., Prynne, C. J., Hardy, R., & Stephen, A. M. (2012). Daily profiles of energy and nutrient intakes: Are eating profiles changing over time. European Journal of Clinical Nutrition, 66(6), 678–686.

    Ansari, S., Haboubi, H., & Haboubi, N. (2020). Adult obesity complications: challenges and clinical impact. Therapeutic Advances in Endocrinology and Metabolism, 11.

    Backhouse, S. H., Bishop, N. C., Biddle, S. J. H., & Williams, C. (2005). Effect of carbohydrate and prolonged exercise on affect and perceived exertion. Medicine and Science in Sports and Exercise, 37(10), 1768–1773.

    Bao, R., Sun, Y., Jiang, Y., Ye, L., Hong, J., & Wang, W. (2022). Effects of Time-Restricted Feeding on Energy Balance: A Cross-Over Trial in Healthy Subjects. Frontiers in Endocrinology, 13.

    Bird, S. R., & Hawley, J. A. (2017). Update on the effects of physical activity on insulin sensitivity in humans. In BMJ Open Sport and Exercise Medicine (Vol. 2, Issue 1). BMJ Open Sport Exerc Med.

    Boden, G., Lebed, B., Schatz, M., Homko, C., & Lemieux, S. (2001). Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes, 50(7), 1612–1617.

    Bogardus, C., Thuillez, P., Ravussin, E., Vasquez, B., Narimiga, M., & Azhar, S. (1983). Effect of muscle glycogen depletion on in vivo insulin action in man. Journal of Clinical Investigation, 72(5), 1605–1610.

    Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian Journal of Rehabilitation Medicine, 2(2), 92–98.

    Brestoff, J. R., Clippinger, B., Spinella, T., Von Duvillard, S. P., Nindl, B., & Arciero, P. J. (2009). An acute bout of endurance exercise but not sprint interval exercise enhances insulin sensitivity. Applied Physiology, Nutrition and Metabolism, 34(1), 25–32.

    Büsing, F., Hägele, F. A., Nas, A., Hasler, M., Müller, M. J., & Bosy-Westphal, A. (2019). Impact of energy turnover on the regulation of glucose homeostasis in healthy subjects. Nutrition & Diabetes, 9(1), 22.

    Cagnacci, A., Arangino, S., Renzi, A., Paoletti, A. M., Melis, G. B., Cagnacci, P., & Volpe, A. (2001). Influence of melatonin administration on glucose tolerance and insulin sensitivity of postmenopausal women. Clinical Endocrinology, 54(3), 339–346.

    Campbell, P. J., Carlson, M. G., Hill, J. O., & Nurjhan, N. (1992). Regulation of free fatty acid metabolism by insulin in humans: role of lipolysis and reesterification. The American Journal of Physiology, 263(6), E1063–E1069.

    Castleberry, T., Irvine, C., Deemer, S. E., Brisebois, M. F., Gordon, R., Oldham, M. D., Duplanty, A. A., & Ben-Ezra, V. (2019). Consecutive days of exercise decrease insulin response more than a single exercise session in healthy, inactive men. European Journal of Applied Physiology, 119(7), 1591–1598.

    Cheng, I. S., Lee, N. Y., Liu, K. L., Liao, S. F., Huang, C. H., & Kuo, C. H. (2005). Effect of postexercise carbohydrate supplementation on glucose uptake-associated gene expression in the human skeletal muscle. The Journal of Nutritional Biochemistry, 16(5), 267–271. https://doi.org/10.1016/J.JNUTBIO.2004.12.006

    Clore, J. N., Nestler, J. E., & Blackard, W. G. (1989). Sleep-associated fall in glucose disposal and hepatic glucose output in normal humans. Putative signaling mechanism linking peripheral and hepatic events. Diabetes, 38(3), 285–290.

    Colberg, S. R., Sigal, R. J., Fernhall, B., Regensteiner, J. G., Blissmer, B. J., Rubin, R. R., Chasan-Taber, L., Albright, A. L., & Braun, B. (2010). Exercise and type 2 diabetes: The American College of Sports Medicine and the American Diabetes Association: Joint position statement. Diabetes Care 32(12), e147–e167.

    DeMatos, M. A., Ottone, V. D. O., Duarte, T. C., Sampaio, P. F. D. M., Costa, K. B., Fonseca, C. A., Neves, M. P. C., Schneider, S. M., Moseley, P., Coimbra, C. C., Magalhães, F. D. C., Rocha-Vieira, E., & Amorim, F. T. (2014). Exercise reduces cellular stress related to skeletal muscle insulin resistance. Cell Stress and Chaperones, 19(2), 263–270.

    DeFronzo, R. A., Jacot, E., Jequier, E., Maeder, E., Wahren, J., & Felber, J. P. (1981). The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes, 30(12), 1000–1007.

    Devlin, J. T., & Horton, E. S. (1985). Effects of prior high-intensity exercise on glucose metabolism in normal and insulin-resistant men. Diabetes, 34(10), 973–979.

    Dohm, G. L., Beeker, R. T., Israel, R. G., & Tapscott, E. B. (1986). Metabolic responses to exercise after fasting. Journal of Applied Physiology, 61(4), 1363–1368.

    Ellis, A. C., Hyatt, T. C., Hunter, G. R., & Gower, B. A. (2010). Respiratory Quotient Predicts Fat Mass Gain in Premenopausal Women. Obesity, 18(12), 2255–2259.

    Frayn, K. N. (1983). Calculation of substrate oxidation rates in vivo from gaseous exchange. Https://Doi.Org/10.1152/Jappl.1983.55.2.628, 55(2), 628–634.

    Garaulet, M., Lopez-Minguez, J., Dashti, H. S., Vetter, C., Hernández-Martínez, A. M., Pérez-Ayala, M., Baraza, J. C., Wang, W., Florez, J. C., Scheer, F. A. J. L., & Saxena, R. (2022). Interplay of Dinner Timing and MTNR1B Type 2 Diabetes Risk Variant on Glucose Tolerance and Insulin Secretion: A Randomized Crossover Trial. Diabetes Care, 45(3), 512–519.

    Gill, J. M. R., Al-Mamari, A., Ferrell, W. R., Cleland, S. J., Packard, C. J., Sattar, N., Petrie, J. R., & Caslake, M. J. (2004). Effects of prior moderate exercise on postprandial metabolism and vascular function in lean and centrally obese men. Journal of the American College of Cardiology, 44(12), 2375–2382.

    Gill, J. M. R., Herd, S. L., Vora, V., & Hardman, A. E. (2003). Effects of a brisk walk on lipoprotein lipase activity and plasma triglyceride concentrations in the fasted and postprandial states. European Journal of Applied Physiology, 89(2), 184–190.

    Gleeson, M., Bishop, N. C., Stensel, D. J., Lindley, M. R., Mastana, S. S., & Nimmo, M. A. (2011). The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. In Nature Reviews Immunology, 11(9), 607–615.

    Gough, L., Castell, L. M., Gatti, R., & Godfrey, R. J. (2016). Growth Hormone Concentrations in Different Body Fluids Before and After Moderate Exercise. Sports Medicine-Open, 2, 1–6.

    Greiwe, J. S., Holloszy, J. O., & Semenkovich, C. F. (2000). Exercise induces lipoprotein lipase and GLUT-4 protein in muscle independent of adrenergic-receptor signaling. Journal of Applied Physiology (Bethesda, Md. : 1985), 89(1), 176–181.

    Gu, C., Brereton, N., Schweitzer, A., Cotter, M., Duan, D., Børsheim, E., Wolfe, R. R., Pham, L. V., Polotsky, V. Y., & Jun, J. C. (2020). Metabolic Effects of Late Dinner in Healthy Volunteers - A Randomized Crossover Clinical Trial. Journal of Clinical Endocrinology and Metabolism, 105(8), 2789–2802.

    Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. In Nature Metabolism, 2(9), 817–828.

    Henderson, G. C., Fattor, J. A., Horning, M. A., Faghihnia, N., Johnson, M. L., Mau, T. L., Luke-Zeitoun, M., & Brooks, G. A. (2007). Lipolysis and fatty acid metabolism in men and women during the postexercise recovery period. The Journal of Physiology, 584(Pt 3), 963–981.

    Hibi, M., Masumoto, A., Naito, Y., Kiuchi, K., Yoshimoto, Y., Matsumoto, M., Katashima, M., Oka, J., & Ikemoto, S. (2013). Nighttime snacking reduces whole body fat oxidation and increases LDL cholesterol in healthy young women. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 304(2), R94–R101.

    Holloszy, J. O. (2005). Invited review: Exercise-induced increase in muscle insulin sensitivity. In Journal of Applied Physiology, 99(1), 338–343.

    Holtz, K. A., Stephens, B. R., Sharoff, C. G., Chipkin, S. R., & Braun, B. (2008). The effect of carbohydrate availability following exercise on whole-body insulin action. Applied Physiology, Nutrition, and Metabolism, 33(5), 946–956.

    Imai, S., Kajiyama, S., Hashimoto, Y., Yamane, C., Miyawaki, T., Ozasa, N., Tanaka, M., & Fukui, M. (2017). Divided consumption of late-night-dinner improves glycemic excursions in patients with type 2 diabetes: A randomized cross-over clinical trial. Diabetes Research and Clinical Practice, 129, 206–212.

    Imai, S., Saito, Y., Kajiyama, S., Nitta, A., Miyawaki, T., Matsumoto, S., Ozasa, N., Kajiyama, S., Hashimoto, Y., & Fukui, M. (2020). Late-night-dinner deteriorates postprandial glucose and insulin whereas consuming dinner dividedly ameliorates them in patients with type 2 diabetes: A randomized crossover clinical trial. Asia Pacific Journal of Clinical Nutrition, 29(1), 68–76.

    Ivy, J. L., Ding, Z., Hwang, H., Cialdella-Kam, L. C., & Morrison, P. J. (2008). Post exercise carbohydrate-protein supplementation: phosphorylation of muscle proteins involved in glycogen synthesis and protein translation. Amino Acids, 35(1), 89–97.

    Ivy, J. L., Frishberg, B. A., Farrell, S. W., Miller, W. J., & Sherman, W. M. (1985). Effects of elevated and exercise-reduced muscle glycogen levels on insulin sensitivity. Journal of Applied Physiology (Bethesda, Md. : 1985), 59(1), 154–159.

    Jamshed, H., Beyl, R. A., Manna, D. L. D., Yang, E. S., Ravussin, E., & Peterson, C. M. (2019). Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients, 11(6), 1234.

    Jeukendrup, A. E., & Wallis, G. A. (2005). Measurement of substrate oxidation during exercise by means of gas exchange measurements. International Journal of Sports Medicine, 26(S 1), S28–S37.

    Johnson-Bonson, D. A., Narang, B. J., Davies, R. G., Hengist, A., Smith, H. A., Watkins, J. D., Taylor, H., Walhin, J. P., Gonzalez, J. T., & Betts, J. A. (2021). Interactive effects of acute exercise and carbohydrate-energy replacement on insulin sensitivity in healthy adults. Applied Physiology, Nutrition, and Metabolism, 46(10), 1207–1215.

    Kajiyama, S., Imai, S., Hashimoto, Y., Yamane, C., Miyawaki, T., Matsumoto, S., Ozasa, N., Tanaka, M., Kajiyama, S., & Fukui, M. (2018). Divided consumption of late-night-dinner improves glucose excursions in young healthy women: A randomized cross-over clinical trial. Diabetes Research and Clinical Practice, 136, 78–84.

    Keller, C., Steensberg, A., Hansen, A. K., Fischer, C. P., Plomgaard, P., & Pedersen, B. K. (2005). Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle. Journal of Applied Physiology (Bethesda, Md. : 1985), 99(6), 2075–2079.

    Keller, C., Steensberg, A., Pilegaard, H., Osada, T., Saltin, B., Pedersen, B. K., & Neufer, P. D. (2001). Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 15(14), 2748–2750.

    Kim, I. Y., Park, S., Trombold, J. R., & Coyle, E. F. (2014). Effects of moderate- and intermittent low-intensity exercise on Postprandial Lipemia. Medicine and Science in Sports and Exercise, 46(10), 1882–1890.

    King, D. S., Dalsky, G. P., Clutter, W. E., Young, D. A., Staten, M. A., Cryer, P. E., & Holloszy, J. O. (1988). Effects of exercise and lack of exercise on insulin sensitivity and responsiveness. Journal of Applied Physiology, 64(5), 1942–1946.

    Kraegen, E. W., & Cooney, G. J. (2008). Free fatty acids and skeletal muscle insulin resistance. Current Opinion in Lipidology, 19(3), 235–241.

    Lee, C. L., Kuo, Y. H., & Cheng, C. F. (2018). Acute high-intensity interval cycling improves postprandial lipid metabolism. Medicine and Science in Sports and Exercise, 50(8), 1687–1696.

    Levy, J. C., Matthews, D. R., & Hermans, M. P. (1998). Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care, 21(12), 2191–2192.

    Lopez-Minguez, J., Saxena, R., Bandín, C., Scheer, F. A., & Garaulet, M. (2018). Late dinner impairs glucose tolerance in MTNR1B risk allele carriers: A randomized, cross-over study. Clinical Nutrition, 37(4), 1133–1140.

    MacEneaney, O. J., Harrison, M., O’Gorman, D. J., Pankratieva, E. V., O’Connor, P. L., & Moyna, N. M. (2009). Effect of prior exercise on postprandial lipemia and markers of inflammation and endothelial activation in normal weight and overweight adolescent boys. European Journal of Applied Physiology, 106(5), 721–729.

    Magkos, F., Mohammed, B. S., Patterson, B. W., & Mittendorfer, B. (2009). Free fatty acid kinetics in the late phase of postexercise recovery: importance of resting fatty acid metabolism and exercise-induced energy deficit. Metabolism: Clinical and Experimental, 58(9), 1248–1255.

    Marinac, C. R., Sears, D. D., Natarajan, L., Gallo, L. C., Breen, C. I., & Patterson, R. E. (2015). Frequency and circadian timing of eating may influence biomarkers of inflammation and insulin resistance associated with breast cancer risk. PLoS ONE, 10(8), e0136240.

    Martínez-Lozano, N., Tvarijonaviciute, A., Ríos, R., Barón, I., Scheer, F. A. J. L., & Garaulet, M. (2020). Late eating is associated with obesity, inflammatory markers and circadian-related disturbances in school-aged children. Nutrients, 12(9), 1–12.

    Matsuda, M., & DeFronzo, R. A. (1999). Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care, 22(9), 1462–1470.

    McConnell, T. R. (1988). Practical Considerations in the Testing of V̇2 max in Runners. Sports Medicine, 5(1), 57–68.

    Melanson, E. L., Gozansky, W. S., Barry, D. W., MacLean, P. S., Grunwald, G. K., & Hill, J. O. (2009). When energy balance is maintained, exercise does not induce negative fat balance in lean sedentary, obese sedentary, or lean endurance-trained individuals. Journal of Applied Physiology (Bethesda, Md. : 1985), 107(6), 1847–1856.

    Metcalfe, R., Fawkner, S., & Vollaard, N. (2016). No Acute Effect of Reduced-exertion High-intensity Interval Training (REHIT) on Insulin Sensitivity. International Journal of Sports Medicine, 37(5), 354–358.

    Mok, J. X., Ooi, J. H., Ng, K. Y., Koh, R. Y., & Chye, S. M. (2019). A new prospective on the role of melatonin in diabetes and its complications. Hormone Molecular Biology and Clinical Investigation, 40(1), 20190036.

    Morris, C. J., Garcia, J. I., Myers, S., Yang, J. N., Trienekens, N., & Scheer, F. A. J. L. (2015). The human circadian system has a dominating role in causing the morning/evening difference in diet-induced thermogenesis. Obesity, 23(10), 2053–2058.

    Muoio, D. M., & Newgard, C. B. (2008). Mechanisms of disease: Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. In Nature Reviews Molecular Cell Biology, 9(3), 193–205.

    Nakamura, K., Tajiri, E., Hatamoto, Y., Ando, T., Shimoda, S., & Yoshimura, E. (2021). Eating dinner early improves 24-h blood glucose levels and boosts lipid metabolism after breakfast the next day: A randomized cross-over trial. Nutrients, 13(7), 2424.

    Newsom, S. A., Schenk, S., Thomas, K. M., Harber, M. P., Knuth, N. D., Goldenberg, N., & Horowitz, J. F. (2010). Energy deficit after exercise augments lipid mobilization but does not contribute to the exercise-induced increase in insulin sensitivity. Journal of Applied Physiology (Bethesda, Md. : 1985), 108(3), 554–560.

    Nielsen, J., Mogensen, M., Vind, B. F., Sahlin, K., Højlund, K., Schrøder, H. D., & Ørtenblad, N. (2010). Increased subsarcolemmal lipids in type 2 diabetes: Effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 298(3), 706–713.

    Nystoriak, M. A., & Bhatnagar, A. (2018). Cardiovascular Effects and Benefits of Exercise. In Frontiers in Cardiovascular Medicine, 5, 135.

    O’Gorman, D. J., Karlsson, H. K. R., McQuaid, S., Yousif, O., Rahman, Y., Gasparro, D., Glund, S., Chibalin, A. V., Zierath, J. R., & Nolan, J. J. (2006). Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia, 49(12), 2983–2992.

    Ormazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C., & Zuñiga, F. A. (2018). Association between insulin resistance and the development of cardiovascular disease. In Cardiovascular Diabetology, 17, 1–14.

    Peschke, E., & Mühlbauer, E. (2010). New evidence for a role of melatonin in glucose regulation. In Best Practice and Research: Clinical Endocrinology and Metabolism, 24(5), 829–841.

    RAO, S. S., DISRAELI, P., & MCGREGOR, T. (2004). Impaired Glucose Tolerance and Impaired Fasting Glucose. American Family Physician, 69(8), 1961–1968.

    Richter, E. A., Derave, W., & Wojtaszewski, J. F. P. (2001). Glucose, exercise and insulin: emerging concepts. The Journal of Physiology, 535(2), 313–322.

    Richter, E. A., Mikines, K. J., Galbo, H., & Kiens, B. (1989). Effect of exercise on insulin action in human skeletal muscle. Journal of Applied Physiology, 66(2), 876–885.

    Romon, M., Edme, J. L., Boulenguez, C., Lescroart, J. L., & Frimat, P. (1993). Circadian variation of diet-induced thermogenesis. American Journal of Clinical Nutrition, 57(4), 476–480.

    Rubio-Sastre, P., Scheer, F. A. J. L., Gómez-Abellán, P., Madrid, J. A., & Garaulet, M. (2014). Acute melatonin administration in humans impairs glucose tolerance in both the morning and evening. Sleep, 37(10), 1715-1719.

    Samuel, V. T., & Shulman, G. I. (2012). Mechanisms for insulin resistance: Common threads and missing links. In Cell, 148(5), 852–871.

    Sato, M., Nakamura, K., Ogata, H., Miyashita, A., Nagasaka, S., Omi, N., Yamaguchi, S., Hibi, M., Umeda, T., Nakaji, S., & Tokuyama, K. (2011). Acute effect of late evening meal on diurnal variation of blood glucose and energy metabolism. Obesity Research and Clinical Practice, 5(3), e220–e228.

    Schleh, M. W., Pitchford, L. M., Gillen, J. B., & Horowitz, J. F. (2020). Energy Deficit Required for Exercise-induced Improvements in Glycemia the Next Day. Medicine and Science in Sports and Exercise, 52(4), 976–982.

    Shi, J., Fan, J., Su, Q., & Yang, Z. (2019). Cytokines and Abnormal Glucose and Lipid Metabolism. In Frontiers in Endocrinology, 10, 703.

    Short, K. R., Pratt, L. V., & Teague, A. M. (2012). The acute and residual effect of a single exercise session on meal glucose tolerance in sedentary young adults. Journal of Nutrition and Metabolism, 2012.

    Short, K. R., Pratt, L. V., & Teague, A. M. (2018). A single exercise session increases insulin sensitivity in normal weight and overweight/obese adolescents. Pediatric Diabetes, 19(6), 1050–1057.

    Søndergaard, E., De Ycaza, A. E. E., Morgan-Bathke, M., & Jensen, M. D. (2017). How to Measure Adipose Tissue Insulin Sensitivity. The Journal of Clinical Endocrinology and Metabolism, 102(4), 1193–1199.

    Stenvers, D. J., Scheer, F. A. J. L., Schrauwen, P., la Fleur, S. E., & Kalsbeek, A. (2019). Circadian clocks and insulin resistance. In Nature Reviews Endocrinology, 15(2), 75–89.

    Taylor, H. L., Wu, C. L., Chen, Y. C., Wang, P. G., Gonzalez, J. T., & Betts, J. A. (2018). Post-exercise carbohydrate-energy replacement attenuates insulin sensitivity and glucose tolerance the following morning in healthy adults. Nutrients, 10(2).

    Trinh, B., Peletier, M., Simonsen, C., Plomgaard, P., Karstoft, K., Klarlund Pedersen, B., van Hall, G., & Ellingsgaard, H. (2021). Blocking endogenous IL-6 impairs mobilization of free fatty acids during rest and exercise in lean and obese men. Cell Reports Medicine, 2(9), 100396.

    Trombold, J. R., Christmas, K. M., MacHin, D. R., Kim, I. Y., & Coyle, E. F. (2013). Acute high-intensity endurance exercise is more effective than moderate-intensity exercise for attenuation of postprandial triglyceride elevation. Journal of Applied Physiology (Bethesda, Md. : 1985), 114(6), 792–800.

    Tsuchida, Y., Hata, S., & Sone, Y. (2013). Effects of a late supper on digestion and the absorption of dietary carbohydrates in the following morning. Journal of Physiological Anthropology, 32(1).

    Viollet, B. (2009). Targeting the AMPK pathway for the treatment of Type 2 diabetes. Frontiers in Bioscience, 14, 3380.

    Vujović, N., Piron, M. J., Qian, J., Chellappa, S. L., Nedeltcheva, A., Barr, D., Heng, S. W., Kerlin, K., Srivastav, S., Wang, W., Shoji, B., Garaulet, M., Brady, M. J., & Scheer, F. A. J. L. (2022). Late isocaloric eating increases hunger, decreases energy expenditure, and modifies metabolic pathways in adults with overweight and obesity. Cell Metabolism, 34(10), 1486-1498.

    Wee, J., Charlton, C., Simpson, H., Jackson, N. C., Shojaee-Moradie, F., Stolinski, M., Pentecost, C., & Umpleby, A. M. (2005). GH secretion in acute exercise may result in post-exercise lipolysis. Growth Hormone & IGF Research : Official Journal of the Growth Hormone Research Society and the International IGF Research Society, 15(6), 397–404.

    Wolever, T. M. S. (2004). Effect of blood sampling schedule and method of calculating the area under the curve on validity and precision of glycaemic index values. The British Journal of Nutrition, 91(2), 295–300.

    Wolsk, E., Mygind, H., Grøndahl, T. S., Pedersen, B. K., & Van Hall, G. (2010). IL-6 selectively stimulates fat metabolism in human skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 299(5), E832–E840.

    Yap, M. C., Balasekaran, G., & Burns, S. F. (2015). Acute effect of 30 min of accumulated versus continuous brisk walking on insulin sensitivity in young Asian adults. European Journal of Applied Physiology, 115(9), 1867–1875.

    Yoshizaki, T., Tada, Y., Hida, A., Sunami, A., Yokoyama, Y., Yasuda, J., Nakai, A., Togo, F., & Kawano, Y. (2013). Effects of feeding schedule changes on the circadian phase of the cardiac autonomic nervous system and serum lipid levels. European Journal of Applied Physiology, 113(10), 2603–2611.

    Young, J. C., Enslin, J., & Kuca, B. (1989). Exercise intensity and glucose tolerance in trained and nontrained subjects. Journal of Applied Physiology, 67(1), 39–43.

    無法下載圖示 電子全文延後公開
    2029/02/02
    QR CODE