簡易檢索 / 詳目顯示

研究生: 游振威
Chen Wei Yu
論文名稱: 氮化鎵奈米線中縱光聲子與電漿子的耦合
Coupled LO-phonon and Plasmon Modes in GaN nanowires
指導教授: 賈至達
Chia, Chih-Ta
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 62
中文關鍵詞: 氮化鎵拉曼耦合
英文關鍵詞: GaN, Raman, coupled
論文種類: 學術論文
相關次數: 點閱:477下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由VLS (氣、液、固三相)所製程的氮化鎵奈米線中,n型氮化鎵的電漿為雜質所造成。縱波光學LO(longtidinal optical)聲子與電漿之耦合現象以拉曼光譜之方法測得,對於介於LO、橫波光學TO(transverse optical)聲子間的譜線可以被解釋為較大電漿阻尼下,LO聲子和電漿的耦合效應所造成的結果,並可由CDF(Charge Density Fluctuations),IIF(Impurity-Induced Fröhlich)兩種機制說明,電漿的介電係數則採用Lindhard-Mermin 的表示式。由程式模擬拉曼散射光譜和實驗結果比對發現,兩種機制都可同時存在並有不同的比例,此比例和入射光能量有關並可由程式擬合,程式擬合發現氮化鎵電漿濃度約在1019 cm-3數量級,阻尼常數約在 200 cm-1 以上,並推測靠近 LO 的峰值由IIF 機制所造成的效果,而非確實LO 聲子的位置,且隨入射光光子能量增加,使得譜線中IIF 效應增強而有偏移現象,並在接近能帶之入射光光子能量,IIF所造成之聲子峰接近LO 聲子的位置。

    The GaN nanowires grown by the vapor-liquid-solid mechanism were studied by Raman scattering. The free electron gas was due to n-type impurities introduced during the growth. The Raman spectra clearly show the coupling of LO phonon and plasmon. The coupling between LO-phonon and plasma can be well explained by CDF (charge-density fluctuation mechanism) and by IIF (impurity-induced Frühlich mechanism). An overdamped plasma model, along with the Lindhard-Mermin dielectric function, was used to calculate the coupling of LO phonon and plasmon. We found it matched with measured Raman spectra, and impurity concentration can be deduced . Plasmon damping constant was over 200 cm-1 and concentration was about 1019 cm-3. The phonon-like peak was deduced by IIF mechanism and shifted when laser energy relatively close to fundamental band gap of GaN.

    第一章 緒論 1 第二章 晶體介紹2.1 氮化鎵晶體的成長方法 2 第三章 Raman實驗原理及裝置 3.1 Raman效應古典理論 6 3.2實驗裝置 7 第四章 理論背景 4.1電漿的介電係數 9 4.2晶格的介電係數 9 4.3耦合作用 10 4.4電漿的介電係數Linhard-Mermin近似 11 4.5 CDF機制及IIF機制 12 4.6 庫倫屏蔽位的感應的加權函數F 12 4.7 程式模擬 13 第五章 實驗結果與程式擬合分析 5.1 電漿阻尼Γ的影響 22 5.2 入射光強度所造成的影響 23 5.3 不同入射光波長的拉曼散射光譜 24 5.4 程式擬合 26 第六章 討論 33 第七章 結論 36 附錄 37

    第一章
    1.Inventor Takeuchi,TetsuyaYamada,Norihide Amano,Hiroshi Akasaki and Isamu ,專利文,USPTO Full-Text Database, (2001)
    2.史光國,現代半導體發光及雷射二極體材料技術, 史光國編著(全華科技圖書股份有限公司, 2001), p.1-1~1-10
    3.G. Abstreiter, M. Cardona, M. Cardona and A. Pinczuk, Light Scattering in Solids IV, edited by M. Cardona and G. Güntherodt(Springer- Verlag, Berlin, 1984), p.53~56.and references therein.
    4.C. C. Chen and C. C. Yeh, Adv. Mater. 12, 738 (2000)
    5.J. M. Ziman and F. R. S, Principles of The Theory of Solids, edited by J. M. Ziman ,(Cambridge University Press 1972), p.149. and references therein.
    第二章
    1.史光國, 現代半導體發光及雷射二極體材料技術, 史光國編著(全華科技圖書股份有限公司, 2001), p.2-1~2-10.
    2.C. C. Chen and C. C. Yeh, Adv. Mater. 12, 738 (2000)
    3.C. C. Chen, C. C. Yeh, C. H. Liang, C. C. Lee, C. H. Chen, M. Y. Yu, H. L. Liu, L. C. Chen, Y. S. Lin, K. J. Ma and K. H. Chen, J. Phys. and Chem. of Solids. 62, 1577-1586 (2001)
    4.H. Siegle, G. Kaczmarczyk, L. Filippidis, A. P. Litvinchuk, A. Hoffmann, and C. Thomsen, Phys. Rev. B. 55, 7000(1997)
    5.F.Albert Cotton, Chemical Applications of Group Theory,edited by F.Albert Cotton (Jwang Yuan Publishing Co.1971), p.357 and references therein.
    第三章
    1.Charles Kittel, Introduction to Solid State Physics, edited by Kittel (John Wiley & Sons Pte.Ltd., Singapore,1986), p306~308 and reference therein.
    第四章
    1.Charles Kittel, Introduction to Solid State Physics, edited by Kittel (John Wiley & Sons Pte.Ltd., Singapore,1986), p255~258 and reference therein.
    2.G. Abstreiter, M. Cardona and A. Pinczuk , Light Scattering in Solids IV , edited by M. Cardona and G. Güntherodt(Springer- Verlag, Berlin, 1984)p.55~61. and reference therein.
    3.J. M. Ziman, Principles of the theory of solids, edited by J. M. Ziman ,(Cambridge University Press 1972), p.146~157.
    4.M. Ramsteiner, O. Brandt, and K. H. Ploog, Phys Rev B 58 1118(1998)
    5.John R. Reitz, Frederick J. Milford and Robert W. Christy, Foundations of Electromagnetic Theory, edited by John R. Reitz (Addison Wesley Publishing Co.1993),p.122~123.
    第五章
    1.H. D. Li and S. L. Zhang, J. Appl. Phys. 91, 4562 (2002)
    2.J. L. Coffer, T. W. Zerda, R. Appel, R. L. Wells and J. F. Janik, Chem. Mater. 11, 20 (1999)
    3.Y. G. Cao, X. L. Chen, Y. C. Lan, X. P. Xu, and J. K. Liang, J. Mater. Res.15, 267 (2000)
    4.G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo, and Y. Q.Mao, Appl. Phys. Lett. 75, 2455 (1999)
    5.T. Azuhata, T. Sota, K. Suzuki and S. Nakamura, J. Phys. Condens.Matter 7, L129 (1995)
    6.H. Siegle, G. Kaczmarczyk, L. Filippidis, A. P. Litvinchuk, A. Hoffmann and C. Thomsen, Phys. Rev. B 55, 7000 (1997)
    7.K. Miwa and A. Fukumoto, Phys. Rev. B 48, 7897 (1993)
    I. Gorczyca, N. E. Christensen, E. L. Peltzer y Blanca´, and C. O. Rodriguez,Phys. Rev. B 51, 11936 (1995)
    8.C. Bungaro, K. Rapcewicz, and J. Bernholc, Phys. Rev. B 61, 6720 (2000)
    9.H. Siegle, G. Kaczmarczyk, L. Filippidis, A. P. Litvinchuk, A. Hoffmann, and C. Thomsen, Phys. Rev. B 55, 5000 (1997)

    QR CODE