簡易檢索 / 詳目顯示

研究生: 林勁欣
Lin, Ching-Hsin
論文名稱: 建立第22型脊隨小腦萎縮症的果蠅模式
Generating Drosophila Models for Spinocerebellar Ataxia Type 22
指導教授: 蘇銘燦
Su, Ming-Tsan
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 30
中文關鍵詞: 脊髓小腦萎縮症果蠅
英文關鍵詞: voltage-gated potassium channel Kv4.3, endoplasmic reticulumstress, K+ efflux
DOI URL: https://doi.org/10.6345/NTNU202204988
論文種類: 學術論文
相關次數: 點閱:247下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脊髓小腦共濟失調症(Spinocerebellar Ataxia,SCA)為一種顯性遺傳性的神經系統疾病,若雙親其中一位患有此症,其子代不分性別均有一半的罹患機率;雖是同一家族,其發病年齡和病徵也不盡相同。台北榮總與陽明大學從一家系共四代的台灣病人,經臨床鑑定確認患有顯性遺傳的小腦運動失調症,透過進行鏈鎖分析發現不同於已知的SCA亞型致病基因位點,且基因CAG、CTG、 ATTCT並無異常重複突變,判斷此為第22型脊髓小腦共濟失調症。通過全基因組鏈鎖分析定位出SCA22突變位於1號染色體1p21-q23,基因變異是發生在編碼的鉀離子(voltage-gated potassium,Kv)通道Kv4.3的KCND3基因。其中在台灣及法國家族皆發現的基因變異為第227個胺基酸Phenylalanine缺失(p. ∆F227);在美國猶太人及日本家族發現的則是第345個胺基酸由Glycine點突變成Valine(p.G345V)。本研究的主要目的即為建立第22型脊髓小腦共濟失調症的果蠅模式株,利用過量表現KCND3突變基因,來探討基因變異造成的Kv4.3鉀離子通道蛋白對病理症狀如運動能力及壽命的影響,並釐清SCA22的致病機制。在本研究中,我們建立的SCA22模式果蠅,確實出現年齡伴隨的病理特徵,包括細胞凋亡、運動能力下降以及縮短壽命等退化症狀。
    此外,在mRNA及蛋白質表現量的測量中,發現∆F227在蛋白質的轉譯功能可能發生異常,由於前人從免疫螢光分析的實驗,發現p. ∆F227的Kv4.3鉀離子通道蛋白無法正常上到細胞膜,且大部分保留在內質網(endoplasmic reticulum,ER),前人研究指出蛋白質累積在內質網會造成內質網壓力(ER stress),我們將近一步觀察細胞是否發生為因應此壓力而產生之相關蛋白質反應。此外由於研究指出鉀離子在調控細胞質離子的恆定上扮演極重要的角色,藉由細胞膜上的鈉鉀離子幫浦(Na+/K+-ATPase)將鉀離子主動運輸至細胞內,及鉀離子通道的開閉調控鉀離子外流,兩者作用平衡可維持細胞容積和防止細胞凋亡發生,我們也將進一步研究過表現G345V基因是否造成細胞內部離子失衡導致細胞的死亡。

    The spinocerebellar ataxias (SCA) are a diverse group of autosomal dominant neurological disorders characterized by progressive degeneration of many nevrse systems, including cerebellum, spinocerebellar tracts, and brain stem neurons. Recent discovery of mutations in the voltage-gated potassium channel Kv4.3-encoded gene KCND3 has shown to be the cause of the autosomal dominant spinocerebellar ataxia type 22 (SCA22). Of all KCND3 mutations, the in-frame three-nucleotide deletion c.679_681delTTC p.F227del (KCND3-ΔF227) has been identified in either the French and Chinese pedigrees. The in-frame point mutation c.1304G>T p.G345V (KCND3-G345V) has been identified in either the American and Japanese pedigrees. Since the underlying pathomechanisms of SCA22 is poorly understood, we generate Drosophila models for SCA22 by overexpression of wild-type KCND3, and mutant KCND3 variants (i.e. ΔF227; G345V) using the UAS/Gal4 system to address the above question. Ectopic expression of mutant KCND3 cause various pathological features, including neurodegeneration, apoptosis, mobility defects and shortened lifespan. More detailed analysis of mRNA and protein expression level found that ΔF227 translation abnormally by decreases in protein production. Since immunocytochemistry analyses revealed that KCND3-ΔF227 retained in the endoplasmic reticulum (ER). We suspect that KCND3-ΔF227 might induces ER stress thereby inducing neurodegenerations. Additionally, KCND3 is a potassium channel, ectopic KCND3 expression may cause the imbalance intracellular potassium concentration and lead to neuronal cell death. All the above mentioned possible pathomechanisms will be investigated with the newly established models.

    Table of Content 中文摘要……………………………………………………….2 Abstract…………………………………………………………3 Introduction……………………………………………………..4 The objectives of study...……………………………………….8 Materials and Methods………………………………………...9 Result………………………………………………………….12 Discussion…………………………………………………..…16 Reference……………………………………………………...17 Figures………………………………………………………...22

    [1] Harding A E. Clinical features and classification of inherited ataxias. Adv Neurol (1993) 61: 1-14
    [2] Stevanin G, DuÈrr A, Brice A. Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur J Hum Genet (2000) 8: 4-18
    [3] Orr H T, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet (1993) 4: 221-6
    [4] Kawaguchi Y, et al. CAG expansions in a novel gene for Machado- Joseph disease at chromosome 14q32.1. Nature Genet (1994) 8: 221-8
    [5] Koide R et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet. (1994) 6:9–13
    [6] Imbert G, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genet (1996) 14: 285-91
    [7] Pulst S M, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet (1996) 14: 269-76
    [8] Sanpei K, et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique. DIRECT. Nature Genet (1996) 14: 277-84
    [9] David G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genet (1997) 17: 65-70
    [10] Zhuchenko O, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the a1A-voltagedependent calcium channel. Nature Genet (1997) 15: 62-9
    [11] Holmes S E, et al. Expansion of a novel CAG trinucleotide repeat in the 5¢ region of PPP2R2B is associated with SCA12. Nature Genet (1999) 23: 391-2
    [12] Koob M D, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature Genet (1999) 21: 379-84
    [13] Matsuura T, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nature Genet (2000) 26: 191-4
    [14] Nakamura K, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet (2001) 10: 1441-8
    [15] Ming-yi Chung, Yi-Chun Lu, Nai-Chia Cheng and Bing-Wen Soong. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain (2003) 126: 1293-1299
    [16] Yi-Chung Lee, et al. Mutations in KCND3 Cause Spinocerebellar Ataxia Type 22. American Neurological Association (2012) 72: 859–869
    [17] Perney T M and Kaczmarek L K. The molecular biology of K+ channels. Current Opinion in Cell Biology (1991) 3: 663-670
    [18] Luneau C, Wiedmann R, Smith J S, Williams J B. Shaw-like rat brain potassium channel cDNA's with divergent 3' ends. FEBS Letters (1991) 288:163-167
    [19] Tempel B L, Jan YN, Jan LY. Cloning of a probable potassium channel gene from mouse brain. Nature (1988) 332: 837-839
    [20] Sansom M S. Potassium channels: watching a voltage-sensor tilt and twist. Current Biology (2000) 10: R206-9
    [21] Salinas M, et al. New modulatory alpha subunits for mammalian Shab K+ channels. The Journal of Biological Chemistry (1997) 272: 24371-24379
    [22] Birnbaum SG, et al. Structure and function of Kv4-family transient potassium channels. Physiological Reviews (2004) 84: 803-833
    [23] Dilks D, et al. Cloning and expression of the human kv4.3 potassium channel. Journal of Neurophysiology (1999) 81: 1974-1977
    [24] M. Schröder and R. J. Kaufman. The mammalian unfolded protein response. Annual Review of Biochemistry (2005) 74: 739–789
    [25] D. Ron and P. Walter. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology (2007) 8: 519–529
    [26] H. P. Harding, Y. Zhang, and D. Ron. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature (1999) 397: 271–274
    [27] S. Kondo, et al. OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nature Cell Biology (2005) 7: 186–194
    [28] H. Yoshida, et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell (2011) 107: 881–891
    [29] M. Calfon, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature (2002) 415: 92–96
    [30] E. Szegezdi, S. E. Logue, A. M. Gorman, and A. Samali. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Reports (2006) 7: 880–885
    [31] Connor J R and Menzies S L. Cellular management of iron in the brain. J Neurol Sci (1995) 134: 33– 44
    [32] Hou, S. T. and MacManus, J. P. Molecular mechanisms of cerebral ischemia-induced neuronal death. Int. Rev. Cytol. (2002) 221: 93–148
    [33] Okouchi, M., Ekshyyan, O., Maracine, M. and Aw, T. Y. Neuronal apoptosis in neurodegeneration. Antioxid. Redox. Signal. (2007) 9: 1059–1096
    [34] Yu, S. P., Canzoniero, L. M., and Choi, D. W. Ion homeostasis and apoptosis. Curr. Opin. Cell Biol. (2001) 13: 405– 411
    [35] Glynn, I. M. Sodium and potassium movements inhuman red cells. J. Physiol. (1956) 34: 278
    [36] Harris, E. J. Linkage of sodium and potassium active transport in human erythrocytes. Active transport and secretion. Symp. SGC. ExptZ. BioZ. (1954) 8: 228
    [37] Post, R. L. and P. C. Jolly. The linkage of sodium potassium and ammonium active transport across the human erythrocyte membrane. Biochim. Biophys. Acta (1957) 25: 119
    [38] Steinbach, H. B. On the sodium and potassium balance of isolated frog muscles. Proc. Natt. Acad. (1952) 38: 451
    [39] Martina M, et al. Functional and Molecular Differences between Voltage-Gated K+ Channels of Fast-Spiking Interneurons and Pyramidal Neurons of Rat Hippocampus. J. Neurosci. (1998) 18: 8111–8125
    [40] Yu, S. P., Canzoniero, L. M., and Choi, D. W. Ion homeostasis and apoptosis. Curr. Opin. Cell Biol. (2001) 13: 405– 411
    [41] Yu, S. P, et al. Mediation of neuronal apoptosis byenhancement of outward potassium current. Science (1997) 278:114 –117
    [42] Bortner, C. D., Hughes, F. M., Jr., and Cidlowski, J. A. A primary role for K+ and Na+ efflux in the activation of apoptosis. J. Biol. Chem. (1997) 272: 32436-32442
    [43] Dallaporta, B.,et al. Potassium leakage during the apoptotic degradation phase. J. Immunol. (1998) 160: 5605-5615
    [44] Yu, S. P.,et al. Role of the outward delayed rectifier K+ current in ceramide-induced caspase activation and apoptosis in cultured cortical neurons. J. Neurochem. (1999) 73: 933-941
    [45] Hughes, F. M., Jr., Bortner, C. D., Purdy, G. D. and Cidlowski, J. A. (1997) Intracellular K_ suppresses the activation of apoptosis in lymphocytes. J. Biol. Chem. 272, 30567–30576
    [46] Bortner, C. D. and Cidlowski, J. A. Cellular mechanisms for the repression of apoptosis. Annu. Rev. Pharmacol. Toxicol. (2002) 42: 259–281
    [47] Beauvais F., Michel, L., Dubertret, L. Human eosinophils in culture undergo a striking and rapid shrinkage during apoptosis. Role of K. channels. J. Leukoc. Biol. (1995) 57: 851-855.
    [48] Nichols C D. Drosophila melanogaster neurobiology, neuropharmacology, and how the fly can inform central nervous system drug discovery. Pharmacol Ther (2006) 112: 677-700
    [49] McGuire SE, Deshazer M, Davis RL. Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog Neurobiol (2005) 76: 328-347
    [50] Adams MD, et al. The genome sequence of Drosophila melanogaster. Science (2000) 287: 2185-2195
    [51] Brand, A.H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development (1993)118: 401--415
    [52] David W. Walker, et al. Hypersensitivity to oxygen and shortened lifespan in a Drosophila mitochondrial complex II mutant PNAS (2006) 103: 4416382–16387
    [53] Nancy M. Bonini. Methods to Detect Patterns of Cell Death in Drosophila. Developmental Biology Protocols: Volume II (2000) 136: 1064-3745

    下載圖示
    QR CODE