簡易檢索 / 詳目顯示

研究生: 林郁伶
Lin, Yu-Ling
論文名稱: 泰國西北部湄平剪切帶之熱定年學研究
Thermochronological Study on the Mae Ping Shear Zone, Northwestern Thailand
指導教授: 葉孟宛
Yeh, Meng-Wan
李通藝
Lee, Tung-Yi
學位類別: 博士
Doctor
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 279
中文關鍵詞: 湄平剪切帶藍山片麻岩王朝斷裂帶碰撞-脫逸地體運動辛梅利亞陸塊岡瓦納大陸素可泰島弧格靈斷層滇緬馬蘇地塊氬-氬定年鋯石鈾-鉛定年
英文關鍵詞: Mae Ping shear zone (MPSZ), Lan Sang gneiss, Wang Chao fault zone, collision-extrusion tectonics, Cimmerian terrane, Gondwana continent, Sukhothai arc, Klaeng fault, Sibumasu terrane, 40Ar/39Ar dating, Zircon U-Pb dating
DOI URL: http://doi.org/10.6345/NTNU202000417
論文種類: 學術論文
相關次數: 點閱:178下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 湄平剪切帶位於泰國西北部,呈現西北-東南走向,於前人文獻中曾被稱作王朝斷裂帶或藍山片麻岩。在新生代東亞碰撞-脫逸地體運動中,湄平剪切帶被認為是印支與滇緬馬蘇地塊往東南方向脫逸的南方邊界。為了驗證此脫逸模式的正確性,已有許多研究試著去釐清該剪切帶的起始年代與結束年代,但還是沒有確切的同剪切運動的年代,也缺乏詳細的構造分析以及跟年代的連結。因此本研究利用了鋯石鈾-鉛定年與鉿同位素分析、雲母氬-氬定點定年、鉀長石氬-氬階段加溫等定年法,結合了岩石學與構造分析以釐清所獲得年代與剪切事件的關係。為了釐清在剪切運動之前發生的地質事件,也研究了明顯遭湄平剪切帶錯移的清邁-臨滄火成/變質岩帶。
    幸運地,本研究在清邁-臨滄帶的南端,即泰國半島的華欣-攀武里地區發現了兩處片麻岩與糜稜岩露頭,其含有502-498 Ma的岩漿鋯石,應是目前滇緬馬蘇地塊上最古老的變質基岩。經由比對其他辛梅利亞陸塊之鋯石鈾-鉛年代、鋯石鉿同位素、與古地理位置,顯示寒武紀時滇緬馬蘇地塊可能為岡瓦納大陸邊緣岩漿弧的一部分。
    根據野外構造與顯微構造之觀察推論,湄平剪切帶應經歷了兩期左移塑性變形事件。由同剪切形成的淡色花岡岩白雲母氬-氬定點定年結果推測,第一期高角度左移剪切事件可能發生於白雲母紀錄的42 Ma之前。根據受第二期低角度左移運動剪切的眼球狀片麻岩之岩相觀察,顯示第二期左移剪切事件應發生在300-400 ℃之間,剛好與黑雲母的封存溫度相近,因此其黑雲母的氬-氬年代35-30 Ma應代表湄平剪切帶第二次左移剪切變形的年代。鋯石鈾-鉛定年結果顯示同一樣本以及鄰近的糜稜岩皆含有36-33 Ma的鋯石,其平均釷-鈾比值為0.5、鉿同位素為正值,可能跟清邁-臨滄帶北部的素帖山變質雜岩體中的糜稜岩40 Ma的鋯石一樣形成於張裂的環境。此外,剪切帶剖面西半側的副片麻岩樣本中都含有約500 Ma的碎屑鋯石,具有滇緬馬蘇地塊的特徵,並有約199 Ma的變質鋯石增生環。但剖面東半側的糜稜岩與受剪切的片麻岩則缺乏約500 Ma的鋯石,卻有220-200 Ma的火成鋯石,則顯示了素可泰島弧的特徵。故推測湄平剪切帶,至少在藍山片麻岩這個剖面上,應是個縫合帶,其構造演化史應比前人研究所認知的更為複雜。而在泰國東南地區格靈剪切帶與周邊火成岩的氬-氬定年研究中,利用單礦物雷射燒熔技術發現格靈剪切帶中有跟湄平剪切帶類似的黑雲母年代(35 Ma),比周邊火成岩體年輕,值得利用氬-氬定點定年技術進一步研究其剪切年代。

    The NW-SE trending Mae Ping shear zone (MPSZ, also known as Wang Chao fault zone or Lan Sang gneisses) in NW Thailand was considered as the southern boundary for the Indochina and northern Sibumasu terranes extruding toward SE during the Cenozoic escape tectonic. Many geochronology studies had been accomplished to constrain the shearing duration for MPSZ in order to verify the extrusion model. Nevertheless, no convincing age could represent the exact onset, syn-kinematic, or cessation of the strike-slip shearing since none of the dated minerals have been proved to record the syn-shearing age. Therefore, zircon U-Pb dating with Hf isotope analysis, in situ 40Ar/39Ar dating on micas, and 40Ar/39Ar furnace step heating on K-feldspar were combined with structural and petrographic analysis to decipher the geological significance of the dates on the shearing. In order to rule out the magmatism and metamorphism prior to shearing, the Chiang Mai-Lincang Belt, which was sheared and offset by MPSZ apparently, was also surveyed.
    Luckily, the current oldest fragments of Sibumasu basement with zircon U-Pb age of 502-498 Ma were identified to have cropped out around the Hua Hin to Pran Buri area, where could be the south extension of the Chiang Mai-Lincang Belt in northern Thailand Peninsula. The correlation of U-Pb zircon age, Hf isotope with other Cimmerian terranes suggests that the Sibumasu terrane could have been a magmatic arc located at the margin of Gondwana in Cambrian.
    The NW-SE trending Mae Ping shear zone (MPSZ, also known as Wang Chao fault zone or Lan Sang gneisses) in NW Thailand was considered as the southern boundary for the Indochina and northern Sibumasu terranes extruding toward SE during the Cenozoic escape tectonic. Many geochronology studies had been accomplished to constrain the shearing duration for MPSZ in order to verify the extrusion model. Nevertheless, no convincing age could represent the exact onset, syn-kinematic, or cessation of the strike-slip shearing since none of the dated minerals have been proved to record the syn-shearing age. Therefore, zircon U-Pb dating with Hf isotope analysis, in situ 40Ar/39Ar dating on micas, and 40Ar/39Ar furnace step heating on K-feldspar were combined with structural and petrographic analysis to decipher the geological significance of the dates on the shearing. In order to rule out the magmatism and metamorphism prior to shearing, the Chiang Mai-Lincang Belt, which was sheared and offset by MPSZ apparently, was also surveyed.
    Luckily, the current oldest fragments of Sibumasu basement with zircon U-Pb age of 502-498 Ma were identified to have cropped out around the Hua Hin to Pranburi area, where could be the south extension of the Chiang Mai-Lincang Belt in northern Thailand Peninsula. The correlation of U-Pb zircon age, Hf isotope with other Cimmerian terranes suggests that the Sibumasu terrane could have been a magmatic arc located at the margin of Gondwana in Cambrian.
    According to the observation of meso-structure and micro-structure, MPSZ should have experienced twice sinistral ductile shearing events. In situ 40Ar/39Ar dating of syn-shearing muscovite fish from leucogranite indicates that an order sinistral, high angle ductile shearing event of MPSZ may have occur before 42 Ma. In situ 40Ar/39Ar dating of biotite from a sheared gneiss, which may deform at 300-400 ℃ based on its petrology, indicates MPSZ experienced a second sinistral, ductile but low angle shearing event with thrust component between 35-30 Ma. This inference is also supported by igneous zircon U-Pb ages of 36-33 Ma from sheared augen gneiss, mylonite, and cataclasite in the MPSZ. These zircons with high Th/U ratios (~0.5) and positive εHf(T) value possibly resulted from the similar extension environment that formed the Doi Suthep complex at the northern part of Chiang Mai-Lincang Belt. Moreover, the zircon U-Pb dating reveals paragneisses from SW side of the Lan Sang gneiss transection has a 500 Ma peak with a metamorphic overgrowth event around 199 Ma, which indicates these paragneisses may have their origins from the Sibumasu terrane. While the NE side of Lan Sang gneiss transection has igneous zircons between ages of 220-200 Ma without any 500 Ma dates, this should be part of the Sukhothai arc. Therefore, MPSZ, at least at the Lan Sang gneiss section, is actually a suture zone between the Sibumasu terrane and Sukhothai arc. The evidence from structural, petrological, and geochronological analyses in this study suggest that the structural evolution of MPSZ is more complicated than previously thought. Preliminary 40Ar/39Ar single grain dating on the Klaeng fault and plutonic rocks nearby reveals similar biotite 40Ar/39Ar dates with MPSZ (35 Ma). Hence the correlation between the Klaeng fault and MPSZ would be an interesting topic for further study.

    1. Introduction 1 2. Tectonic and Geological Setting 9 2.1 Hua Hin-Pranburi area 11 2.2 Chiang Mai-Lincang Belt (Bhumibol Dam area) 11 2.3 Mae Ping shear zone (MPSZ) 14 2.4 Klaeng fault and the Chanthaburi terrane 14 3. Methods 15 3.1 Structural measurements 15 3.2 Zircon U-Pb dating and Hf isotope analysis 15 3.3 Whole rock wavelength dispersive X-ray fluorescence spectrometry 16 3.4 40Ar/39Ar geochronology 17 3.5 Electron Probe Micro-Analysis (EPMA) 21 4. Sample description 23 4.1 Hua Hin-Pranburi area 23 4.2 Bhumibol Dam area (Chiang Mai-Lincang belt) 27 4.3 Mae Ping shear zone 30 4.4 Klaeng fault 39 5. Structural analysis 41 5.1 Hua Hin-Pranburi area of Thailand peninsula 41 5.2 Bhumibol Dam area (Chiang Mai-Lincang belt) 43 5.3 Mae Ping Shear Zone 46 5.4 Reconstructed Structural Evolution of studied region 51 6. Geochemical Analysis 55 6.1 XRF 55 6.2 SEM-EDX and EPMA (TM0618 sheared leucogranite) 58 7. Zircon U-Pb dating and Hf isotope analysis 63 7.1 Hua Hin-Pranburi area of Thailand peninsula 63 7.2 Mae Ping Shear Zone 69 7.3 Interpretation and discussion 93 8. In situ laser ablation 40Ar/39Ar dating of Muscovite fish 99 8.1 Results 99 8.2 Closure temperature calculation 103 8.3 Interpretation 104 9. In situ laser ablation 40Ar/39Ar dating of biotite 111 9.1 Results 111 9.2 Interpretation 114 10. 40Ar/39Ar step-heating dating 117 10.1 Mae Ping Shear Zone 117 10.2 Hua Hin area 124 10.3 Interpretation 127 11. Laser single grain 40Ar/39Ar dating 131 11.1 Results 131 11.2 Interpretation 153 12. Discussion 155 12.1 The presence and distribution of Cambrian basement in SE Asia 155 12.2 The influence of Paleo-Tethys ocean closure on MPSZ 158 12.3 The Cenozoic magmatic event in MPSZ is pre-, syn-, or post-shearing? 161 12.4 The shearing date for MPSZ 163 12.5 The evidence for MPSZ could be a suture zone 166 12.6 The tectonic evolution of MPSZ 168 13. Conclusion 171 14. References 173 15. Appendixes 188 15.1 Zircon LA-ICP-MS U-Pb dating data 188 15.2 Zircon Hf isotope data 211 15.3 EPMA data 215 15.4 In situ laser ablation 40Ar/39Ar dating data of muscovite in TM0618 sheared leucogranite 224 15.5 In situ laser ablation 40Ar/39Ar dating data of biotite in TM0624B sheared augen gneiss 230 15.6 Conventional furnace step heating 40Ar/39Ar dating data 239 15.7 Single grain laser ablation 40Ar/39Ar dating data 247 15.8 Structural measurement data 259 15.9 In situ laser ablation 40Ar/39Ar dating results of muscovite in TM0618 265 Curriculum Vitae 277

    Ahrendt, H., Chonglakmani, C., Hansen, B. T., and Helmcke, D., 1993, Geochronological cross section through northern Thailand: Journal of Southeast Asian Earth Sciences, v. 8, p. 207-217.
    Arboit, F., Collins, A. S., Morley, C. K., King, R., and Amrouch, K., 2016, Detrital zircon analysis of the southwest Indochina terrane, central Thailand: Unravelling the Indosinian orogeny: GSA Bulletin, v. 128, no. 5-6, p. 1024-1043.
    Baksi, A. K., Archibald, D. A., and Farrar, E., 1996, Intercalibration of 40Ar/39Ar dating standards: Chemical Geology, v. 129, no. 3-4, p. 307-324.
    Barber, A. J., and Crow, M. J., 2003, An Evaluation of Plate Tectonic Models for the Development of Sumatra: Gondwana Research, v. 6, no. 1, p. 1-28.
    Barr, S. M., MacDonald, A. S., Dunning, G. R., Ounchanum, P., and Yaowanoiyothin, W., 2000, Petrochemistry, U-Pb (zircon) age, and palaeotectonic setting of the Lampang volcanic belt, northern Thailand: Journal of the Geological Society, v. 157, p. 553-563.
    Beckinsale, R. D., Suensilpong, S., Nakapadungrat, S., and Walsh, J. N., 1979, Geochronology and Geochemistry of Granite Magmatism in Thailand in Relation to a Plate Tectonic Model: Journal of the Geological Society, v. 136, no. SEP, p. 529-540.
    Belousova, E., Griffin, W., O'Reilly, S. Y., and Fisher, N., 2002, Igneous zircon: trace element composition as an indicator of source rock type: Contributions to Mineralogy and Petrology, v. 143, no. 5, p. 602-622.
    Blackburn, T., Bowring, S. A., Schoene, B., Mahan, K., and Dudas, F., 2011, U-Pb thermochronology: creating a temporal record of lithosphere thermal evolution: Contributions to Mineralogy and Petrology, v. 162, no. 3, p. 479-500.
    Blanckenburg, F. v., Villa, I. M., Baur, H., Morteani, G., and Steiger, R. H., 1989, Time calibration of a PT-path from the Western Tauern Window, Eastern Alps: the problem of closure temperatures: Contributions to Mineralogy and Petrology, v. 101, no. 1, p. 1-11.
    Boonchaisuk, S., Siripunvaraporn, W., and Ogawa, Y., 2013, Evidence for middle Triassic to Miocene dual subduction zones beneath the Shan-Thai terrane, western Thailand from magnetotelluric data: Gondwana Research, v. 23, no. 4, p. 1607-1616.
    Braun, I., Raith, M., and Kumar, G. R. R., 1996, Dehydration-Melting Phenomena in Leptynitic Gneisses and the Generation of Leucogranites: a Case Study from the Kerala Khondalite Belt, Southern India: Journal of Petrology, v. 37, no. 6, p. 1285-1305.
    Brown, M., 2001, Orogeny, migmatites and leucogranites: A review: Journal of Earth System Science, v. 110, no. 4, p. 313-336.
    -, 2007, Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences: Journal of the Geological Society, v. 164, no. 4, p. 709-730.
    Brown, M., and Solar, G. S., 1998, Shear-zone systems and melts: feedback relations and self-organization in orogenic belts: Journal of Structural Geology, v. 20, no. 2-3, p. 211-227.
    Brum, F., von Braun, E., Hahn, L., Hess, A., Koch, K. E., Krause, G., Quarsh, H., and Siebenhuner, M., 1970, On the geology of northern Thailand: Geol. Jahrb., v. 102, p. 1-24.
    Bunopas, S., 1981, Paleogeographic History of Western Thailand and Adjacent Parts of South-east Asia: A Plate Tectonics Interpretation. Ph.D. Thesis]: Victoria University of Wellington.
    Bunopas, S., Vella, P., Fontaine, H., Hada, S., Burrett, C., Haines, P., Potisat, S., Wongwanich, T., Chaodamrong, P., Howard, K. T., and Khositanont, S., 2001, Growth of Asia in the Late Triassic Continent-Continent Collision of Shan-Thai and Indochina Against South China: Gondwana Research, v. 4, no. 4, p. 584-585.
    Cai, F., Ding, L., Yao, W., Laskowski, A. K., Xu, Q., Zhang, J. e., and Sein, K., 2017, Provenance and tectonic evolution of Lower Paleozoic-Upper Mesozoic strata from Sibumasu terrane, Myanmar: Gondwana Research, v. 41, p. 325-336.
    Campbell, K. V., 1975a, Basement complexes: Dep. Geol. Sci. Univ. Chiangmai Spec. Publ., v. 1, p. 3-12.
    Campbell, K. V., Metamorphic and deformational events recorded in the Lansang gneiss, in Proceedings Proceedings of the Conference on the Geology of Thailand, Chiang Mai, 1975b, p. 15-23.
    Cawood, P. A., Johnson, M. R. W., and Nemchin, A. A., 2007, Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly: Earth and Planetary Science Letters, v. 255, no. 1-2, p. 70-84.
    Charusiri, P., Assavapatchara, S., Xu, X., and Daorerk, V., 2001, Isotope Geology of Upper Paleozoic Carbonates, Loei Area, NE Thailand: Implication for Paleoenvironments and Tectonic Setting: Gondwana Research, v. 4, no. 4, p. 590.
    Charusiri, P., Clark, A. H., Farrar, E., Archibald, D., and Charusiri, B., 1993, Granite belts in Thailand: evidence from the 40Ar/39Ar geochronological and geological syntheses: Journal of Southeast Asian Earth Sciences, v. 8, no. 1-4, p. 127-136.
    Chiu, H. Y., Chung, S. L., Wu, F. Y., Liu, D., Liang, Y. H., Lin, I. J., Iizuka, Y., Xie, L. W., Wang, Y., and Chu, M. F., 2009, Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet: Tectonophysics, v. 477, no. 1–2, p. 3-19.
    Chiu, H. Y., Chung, S. L., Zarrinkoub, M. H., Melkonyan, R., Pang, K. N., Lee, H. Y., Wang, K. L., Mohammadi, S. S., and Khatib, M. M., 2017, Zircon Hf isotopic constraints on magmatic and tectonic evolution in Iran: Implications for crustal growth in the Tethyan orogenic belt: Journal of Asian Earth Sciences, v. 145, p. 652-669.
    Chiu, Y.-P., Yeh, M.-W., Wu, K.-H., Lee, T.-Y., Lo, C.-H., Chung, S.-L., and Iizuka, Y., 2018, Transition from extrusion to flow tectonism around the Eastern Himalaya syntaxis: GSA Bulletin, v. 130, no. 9-10, p. 1675-1696.
    Cobbing, E. J., Mallick, D. I. J., Pitfield, P. E. J., and Teoh, L. H., 1986, The Granites of the Southeast-Asian Tin Belt: Journal of the Geological Society, v. 143, p. 537-550.
    Cunningham, W. D., and Mann, P., 2007, Tectonics of strike-slip restraining and releasing bends: Geological Society, London, Special Publications, v. 290, no. 1, p. 1-12.
    DMR, 1999, Geological Map of Thailand 1:2,500,000: Geological Survey Division, Department of Mineral Resources.
    Dodson, M. H., 1973, Closure temperature in cooling geochronological and petrological systems: Contributions to Mineralogy and Petrology, v. 40, no. 3, p. 259-274.
    Dunning, G. R., Macdonald, A. S., and Barr, S. M., 1995, Zircon and monazite U-Pb dating of the Doi inthanon core complex, northern Thailand: Implications for extension within the Indosinian Orogen: Tectonophysics, v. 251, no. 1-4, p. 197-213.
    England, P., and Houseman, G., 1985, Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions: Nature, v. 315, no. 6017, p. 297-301.
    Fang, R. S., and Fan, J. C., 1993, Some new research on the geological characteristics in Western Yunnan: Geosciences Journal, v. 7, no. 4, p. 394-401.
    Ferry, J. M., and Spear, F. S., 1978, Experimental calibration of the partitioning of Fe and Mg between biotite and garnet: Contributions to Mineralogy and Petrology, v. 66, no. 2, p. 113-117.
    Gardiner, N. J., Searle, M. P., Morley, C. K., Whitehouse, M. P., Spencer, C. J., and Robb, L. J., 2016, The closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: New insights from zircon U-Pb and Hf isotope data: Gondwana Research, v. 39, p. 401-422.
    Gilley, L. D., Harrison, T. M., Leloup, P. H., Ryerson, F. J., Lovera, O. M., and Wang, J.-H., 2003, Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam: Journal of Geophysical Research, v. 108, p. 2127-2148.
    Green, N. L., and Usdansky, S. I., 1986a, Ternary-feldspar mixing relations and thermobarometry: American Mineralogist, v. 71, no. 9-10, p. 1100-1108.
    -, 1986b, Toward a practical plagioclase-muscovite thermometer: American Mineralogist, v. 71, no. 9-10, p. 1109-1117.
    Hall, R., van Hattum, M. W. A., and Spakman, W., 2008, Impact of India-Asia collision on SE Asia: The record in Borneo: Tectonophysics, v. 451, no. 1-4, p. 366-389.
    Hames, W. E., and Bowring, S. A., 1994, An empirical evaluation of the argon diffusion geometry in muscovite: Earth and Planetary Science Letters, v. 124, no. 1, p. 161-169.
    Hara, H., Wakita, K., Ueno, K., Kamata, Y., Hisada, K., Charusiri, P., Charoentitirat, T., and Chaodumrong, P., 2009, Nature of accretion related to Paleo-Tethys subduction recorded in northern Thailand: Constraints from mélange kinematics and illite crystallinity: Gondwana Research, v. 16, no. 2, p. 310-320.
    Harrison, T. M., Célérier, J., Aikman, A. B., Hermann, J., and Heizler, M. T., 2009, Diffusion of 40Ar in muscovite: Geochimica et Cosmochimica Acta, v. 73, no. 4, p. 1039-1051.
    Hauser, N., Matteini, M., Omarini, R. H., and Pimentel, M. M., 2011, Combined U-Pb and Lu-Hf isotope data on turbidites of the Paleozoic basement of NW Argentina and petrology of associated igneous rocks: Implications for the tectonic evolution of western Gondwana between 560 and 460 Ma: Gondwana Research, v. 19, no. 1, p. 100-127.
    Hodges, K. V., and Crowley, P. D., 1985, Error estimation and empirical geothermobarometry for pelitic systems: American Mineralogist, v. 70, no. 7-8, p. 702-709.
    Hodges, K. V., and Spear, F. S., 1982, Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire: American Mineralogist, v. 67, no. 11-12, p. 1118-1134.
    Hoisch, T. D., 1990, Empirical calibration of six geobarometers for the mineral assemblage quartz+muscovite+biotite+plagioclase+garnet: Contributions to Mineralogy and Petrology, v. 104, no. 2, p. 225-234.
    Holdaway, M. J., and Lee, S. M., 1977, Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical, and natural observations: Contributions to Mineralogy and Petrology, v. 63, no. 2, p. 175-198.
    Hoskin, P. W. O., 2000, Patterns of chaos: fractal statistics and the oscillatory chemistry of zircon: Geochimica et Cosmochimica Acta, v. 64, no. 11, p. 1905-1923.
    Hoskin, P. W. O., and Black, L. P., 2000, Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon: Journal of Metamorphic Geology, v. 18, no. 4, p. 423-439.
    Hoskin, P. W. O., and Schaltegger, U., 2003, The Composition of Zircon and Igneous and Metamorphic Petrogenesis: Reviews in Mineralogy and Geochemistry, v. 53, no. 1, p. 27-62.
    Hutchison, C. S., 1989, Geological evolution of south-east Asia, Oxford, UK, Oxford University Press, Oxford Monographs on Geology and Geophysics.
    Iizuka, T., and Hirata, T., 2005, Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique: Chemical Geology, v. 220, no. 1–2, p. 121-137.
    Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E., 2008, Hole-filled SRTM for the globe Version 4: available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org).
    Kanjanapayont, P., Klötzli, U., Charusiri, P., and Klötzli, E., LA-MC-ICP-MS UPb Zircon Geochronology of the Lan Sang and Nong Yai Gneisses , Thailand, in Proceedings International Conference on Geology, Geotechnology and Mineral Resources of Indochina (GEOINDO 2011), Khon Kaen, Thailand, 2011.
    Kawakami, T., Nakano, N., Higashino, F., Hokada, T., Osanai, Y., Yuhara, M., Charusiri, P., Kamikubo, H., Yonemura, K., and Hirata, T., 2014, U-Pb zircon and CHIME monazite dating of granitoids and high-grade metamorphic rocks from the Eastern and Peninsular Thailand- A new report of Early Paleozoic granite: Lithos, v. 200-201, p. 64-79.
    Kelley, S., 1988, The relationship between K-Ar mineral ages, mica grainsizes and movement on the Moine Thrust Zone, NW Highlands, Scotland: Journal of the Geological Society, v. 145, no. 1, p. 1.
    Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A., and Kinny, P. D., 2006, Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon: Nature, v. 439, no. 7076, p. 580-583.
    Koppers, A. A. P., 2002, ArArCALC-software for 40Ar/39Ar age calculations: Computers & Geosciences, v. 28, no. 5, p. 605-619.
    Kramar, N., Cosca, M. A., and Hunziker, J. C., 2001, Heterogeneous Ar-40* distributions in naturally deformed muscovite: in situ UV-laser ablation evidence for micro structurally controlled intragrain diffusion: Earth and Planetary Science Letters, v. 192, no. 3, p. 377-388.
    Kretz, R., 1983, Symbols for rock-forming minerals: American Mineralogist, v. 68, no. 1-2, p. 277-279.
    Lacassin, R., Leloup, P. H., and Tapponnier, P., 1993, Bounds on Strain in Large Tertiary Shear Zones of Se Asia from Boudinage Restoration: Journal of Structural Geology, v. 15, no. 6, p. 677-692.
    Lacassin, R., Maluski, H., Leloup, P. H., Tapponnier, P., Hinthong, C., Siribhakdi, K., Chuaviroj, S., and Charoenravat, A., 1997, Tertiary diachronic extrusion and deformation of western Indochina: Structural and 40Ar/39Ar evidence from NW Thailand: Journal of Geophysical Research-Solid Earth, v. 102, no. B5, p. 10013-10037.
    Lan, C. Y., Chung, S. L., Lo, C. H., Lee, T. Y., Wang, P. L., Li, H. M., and Van Toan, D., 2001, First evidence for Archean continental crust in northern Vietnam and its implications for crustal and tectonic evolution in Southeast Asia: Geology, v. 29, no. 3, p. 219-222.
    Le Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S. M. F., Upreti, B. N., and Vidal, P., 1987, Crustal generation of the Himalayan leucogranites: Tectonophysics, v. 134, no. 1-3, p. 39-57.
    Lee, J., and Whitehouse, M. J., 2007, Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages: Geology, v. 35, no. 1, p. 45-48.
    Lee, J. Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H. S., Lee, J. B., and Kim, J. S., 2006, A redetermination of the isotopic abundances of atmospheric Ar: Geochimica et Cosmochimica Acta, v. 70, no. 17, p. 4507-4512.
    Leloup, P. H., Lacassin, R., Tapponnier, P., Schärer, U., Dalai, Z., Xiaohan, L., Liangshang, Z., Shaochengc, J., and Trinh, P. T., 1995, The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina: Tectonophysics, v. 251, no. 1-4, p. 3-10.
    Liew, T. C., and Mcculloch, M. T., 1985, Genesis of Granitoid Batholiths of Peninsular-Malaysia and Implications for Models of Crustal Evolution - Evidence from a Nd-Sr Isotopic and U-Pb Zircon Study: Geochimica Et Cosmochimica Acta, v. 49, no. 2, p. 587-600.
    Liew, T. C., and Page, R. W., 1985, U-Pb Zircon Dating of Granitoid Plutons from the West-Coast Province of Peninsular Malaysia: Journal of the Geological Society, v. 142, no. MAY, p. 515-526.
    Lin, T. H., Mitchell, A. H. G., Chung, S. L., Tan, X. B., Tang, J. T., Oo, T., and Wu, F. Y., 2019, Two parallel magmatic belts with contrasting isotopic characteristics from southern Tibet to Myanmar: zircon U-Pb and Hf isotopic constraints: Journal of the Geological Society, v. 176, no. 3, p. 574-587.
    Lin, Y. L., Yeh, M. W., Lee, T. Y., Chung, S. L., Iizuka, Y., and Charusiri, P., 2013, First evidence of the Cambrian basement in Upper Peninsula of Thailand and its implication for crustal and tectonic evolution of the Sibumasu terrane: Gondwana Research, v. 24, no. 3, p. 1031-1037.
    Liu, S., Hu, R. Z., Gao, S., Feng, C. X., Huang, Z., Lai, S., Yuan, H., Liu, X., Coulson, I. M., Feng, G., Wang, T., and Qi, Y. Q., 2009, U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, Western Yunnan Province, SW China: Journal of Asian Earth Sciences, v. 36, no. 2-3, p. 168-182.
    Lo, C. H., Chung, S. L., Lan, C. Y., Lee, T. Y., Li, H. M., Nam, T., and Sano, Y., 2001, Evidence for Archean Continental Crust in Northern Vietnam and its Implications for Tectonic Evolution in SE Asia: Gondwana Research, v. 4, no. 4, p. 691.
    Lo, C. H., Chung, S. L., Lee, T. Y., and Wu, G., 2002, Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events: Earth and Planetary Science Letters, v. 198, no. 3, p. 449-458.
    Lo, C. H., and Onstott, T. C., 1989, 39Ar recoil artifacts in chloritized biotite: Geochimica et Cosmochimica Acta, v. 53, no. 10, p. 2697-2711.
    Lovera, O. M., Grove, M., and Harrison, T. M., 2002, Systematic analysis of K-feldspar 40Ar/39Ar step heating results II: relevance of laboratory argon diffusion properties to nature: Geochimica et Cosmochimica Acta, v. 66, no. 7, p. 1237-1255.
    Lovera, O. M., Richter, F. M., and Harrison, T. M., 1989, The 40Ar/39Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes: Journal of Geophysical Research: Solid Earth, v. 94, no. B12, p. 17917-17935.
    Ludwig, K. R., 2008, User's Manual for Isoplot 3.70: A Geochronological Toolkit for Microsoft Excel, Kenneth R. Ludwig.
    MacDonald, A. S., Barr, S. M., Dunning, G. R., and Yaowanoiyothin, W., 1993, The Doi Inthanon metamorphic core complex in NW Thailand: age and tectonic significance: Journal of Southeast Asian Earth Sciences, v. 8, no. 1, p. 117-125.
    Macdonald, A. S., Barr, S. M., Miller, B. V., Reynolds, P. H., Rhodes, B. P., and Yokart, B., 2010, P-T-t constraints on the development of the Doi Inthanon metamorphic core complex domain and implications for the evolution of the western gneiss belt, northern Thailand: Journal of Asian Earth Sciences, v. 37, no. 1, p. 82-104.
    Mahawat, C., Atherton, M. P., and Brotherton, M. S., 1990, The Tak Batholith, Thailand: the evolution of contrasting granite types and implications for tectonic setting: Journal of Southeast Asian Earth Sciences, v. 4, no. 1, p. 11-27.
    Maniar, P. D., and Piccoli, P. M., 1989, Tectonic discrimination of granitoids: Geological Society of America Bulletin, v. 101, no. 5, p. 635-643.
    McDougall, I., and Harrison, T. M., 1999, Geochronology and Thermochronology by the 40Ar/39Ar Method, New York, Oxford University Press.
    Meffre, S., Zaw, K., Khositanont, S., and Harris, A., 2007, New LA ICP–MS zircon age of gneissic complexes in Thailand: Implications for SE Asian tectonics, Asia Oceania Geoscience Society (AOGS) 4th Meeting: Bangkok, Thailand.
    Metcalfe, I., 1984, Stratigraphy, palaeontology and palaeogeography of the Carboniferous of Southeast Asia: Mémoires de la Société Géologique de France, v. 147, p. 107-118.
    -, 1988, Origin and assembly of south-east Asian continental terranes: Geological Society, London, Special Publications, v. 37, no. 1, p. 101-118.
    -, 1996, Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys: Australian Journal of Earth Sciences, v. 43, p. 605-623.
    -, 2000, The Bentong-Raub Suture Zone: Journal of Asian Earth Sciences, v. 18, no. 6, p. 691-712.
    -, 2006, Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context: Gondwana Research, v. 9, no. 1-2, p. 24-46.
    Metcalfe, I., 2011, Tectonic framework and Phanerozoic evolution of Sundaland: Gondwana Research, v. 19, no. 1, p. 3-21.
    Metcalfe, I., Henderson, C. M., and Wakita, K., 2017, Lower Permian conodonts from Palaeo-Tethys Ocean Plate Stratigraphy in the Chiang Mai-Chiang Rai Suture Zone, northern Thailand: Gondwana Research, v. 44, p. 54-66.
    Mickein, A., 1997, U/Pb-, Rb/Sr- und K/Ar-Untersuchungen zur metamorphen Entwicklung und Alterstellung des “Präkambriums” in NW-Thailand: Gött. Arb. Zur Geol. Paläontol., v. 73, p. 1-83.
    Miller, C., Thöni, M., Frank, W., Grasemann, B., Klötzli, U., Guntli, P., and Draganits, E., 2001, The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement: Geological Magazine, v. 138, no. 3, p. 237-251.
    Miller, C. F., Stoddard, E. F., Bradfish, L. J., and Dollase, W. A., 1981, Composition of plutonic muscovite: genetic implications: Canadian Mineralogist, v. 19, no. 1, p. 25-34.
    Milord, I., Sawyer, E. W., and Brown, M., 2001, Formation of Diatexite Migmatite and Granite Magma during Anatexis of Semi-pelitic Metasedimentary Rocks: an Example from St. Malo, France: Journal of Petrology, v. 42, no. 3, p. 487-505.
    Mitchell, A. H. G., 1981, Phanerozoic plate boundaries in mainland SE Asia, the Himalayas and Tibet: Journal of the Geological Society, v. 138, no. 2, p. 109-122.
    Mitchell, A. H. G., 1986, Mesozoic and Cenozoic regional tectonics and metallogenesis in mainland SE Asia: GEOSEA V Proc., II. Geol. Soc. Malays. Bull., v. 20, no. 221-239.
    Morley, C. K., 2012, Late Cretaceous-Early Palaeogene tectonic development of SE Asia: Earth-Science Reviews, v. 115, no. 1, p. 37-75.
    Morley, C. K. S., M.; Carter, A.; Charusiri, P.; Chantraprasert, S., 2007, Evolution of deformation styles at a major restraining bend, constraints from cooling histories, Mae Ping fault zone, western Thailand: Geological Society, London, Special Publications, v. 290, p. 325-349.
    Nabelek, P. I., and Liu, M., 1999, Leucogranites in the Black Hills of South Dakota: The consequence of shear heating during continental collision: Geology, v. 27, no. 6, p. 523-526.
    Nabelek, P. I., Liu, M., Ishihara, S., Stephens, W. E., Harley, S. L., Arima, M., and Nakajima, T., 2004, Petrologic and thermal constraints on the origin of leucogranites in collisional orogens, The Fifth Hutton Symposium on the Origin of Granites and Related Rocks, Volume 389, Geological Society of America, p. 0.
    Nachit, H., Ibhi, A., Abia, E. H., and Ben Ohoud, M., 2005, Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites: Comptes Rendus Geoscience, v. 337, no. 16, p. 1415-1420.
    Österle, J. E., Klötzli, U., Stockli, D. F., Palzer-Khomenko, M., and Kanjanapayont, P., 2019, New age constraints on the Lan Sang gneiss complex, Thailand, and the timing of activity of the Mae Ping shear zone from in-situ and depth-profile zircon and monazite U-Th-Pb geochronology: Journal of Asian Earth Sciences, v. 181, p. 103886.
    Palin, R. M., Searle, M. P., Morley, C. K., Charusiri, P., Horstwood, M. S. A., and Roberts, N. M. W., 2013, Timing of metamorphism of the Lansang gneiss and implications for left-lateral motion along the Mae Ping (Wang Chao) strike-slip fault, Thailand: Journal of Asian Earth Sciences, v. 76, no. Supplement C, p. 120-136.
    Pan, G. T., Zhu, D. C., Wang, L. Q., Liao, Z. L., Geng, Q. R., and Jiang, X. S., 2004, Bangong lake-Nujiang River suture zone-the northern boundary of Gondwana: evidence from geology and geophysics: Earth Science Frontiers, v. 11, p. 371-382.
    Passchier, C. W., and Trouw, R. A. J., 2005, Microtectonics, Springer.
    Peltzer, G., and Tapponnier, P., 1988, Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia Collision: An experimental approach: Journal of Geophysical Research: Solid Earth, v. 93, no. B12, p. 15085-15117.
    Peltzer, G., Tapponnier, P., Gaudemer, Y., Meyer, B., Guo, S. M., Yin, K. L., Chen, Z. T., and Dai, H. G., 1988, Offsets of Late Quaternary Morphology, Rate of Slip, and Recurrence of Large Earthquakes on the Chang Ma Fault (Gansu, China): Journal of Geophysical Research-Solid Earth and Planets, v. 93, no. B7, p. 7793-7812.
    Perchuk, L., Aranovich, L. Y., Podlesskii, K., LAvRANT'EvA, I., Gerasimov, V. Y., Fed'Kin, V., Kitsul, V., Karsakov, L., and Berdnikov, N., 1985, Precambrian granulites of the Aldan shield, eastern Siberia, USSR: Journal of metamorphic Geology, v. 3, no. 3, p. 265-310.
    Perchuk, L., Gerya, T., and Nozhkin, A., 1989, Petrology and retrograde P-T path in granulites of the Kanskaya formation, Yenisey range, Eastern Siberia: Journal of Metamorphic Geology, v. 7, no. 6, p. 599-617.
    Phillips, R. J., Parrish, R. R., and Searle, M. P., 2004, Age constraints on ductile deformation and long-term slip rates along the Karakoram fault zone, Ladakh: Earth and Planetary Science Letters, v. 226, no. 3-4, p. 305-319.
    Pickles, C. S., Kelley, S. P., Reddy, S. M., and Wheeler, J., 1997, Determination of high spatial resolution argon isotope variations in metamorphic biotites: Geochimica Et Cosmochimica Acta, v. 61, no. 18, p. 3809-3833.
    Pongsapich, W., Charusiri, P., and Vedchakanchana, S., 1983, Reviews of metamorphic rocks of Thailand: Proc. Workshop Stratigraphic Correlation of Thailand and Malasia, 1, Geol. Soc. Thailand, Bangkok/ Geol. Soc. Malasia, Kuala Lumpur, p. 244-252.
    Pongsapich, W., Vedchakanchana, S., and Pongprayoon, P., 1980, Petrology of the Pranburi-Hua Hin Metamorphic Complex and Geochemistry of Gneisses in it: Geological Society of Malaysia, Bulletin, v. 12, p. 55-74.
    Pongsapitch, W., Vedchakanchana, S., and Pongproyoon, P., 1980, Petrology of the Pran buri, Hua Hin metamorphic complex and geochemistry of gneiss in it: Geological society of Malaysia, v. 12, p. 55-74.
    Ponmanee, P., Kanjanapayont, P., Grasemann, B., Urs, K., and Choowong, M., 2016, Quantitative finite strain analysis of high-grade metamorphic rocks within the Mae Ping shear zone, western Thailand: Austrian Journal of Earth Sciences, v. 109, no. 2, p. 233-240
    Purdy, J. W., and Jäger, E., 1976, K-Ar ages on rock-forming minerals from the Central Alps: Memoirs of the Institute of Geology and Mineralogy, University of Padova, v. 30, p. 3-31.
    Putthapiban, P., and Suensilpong, S., 1978, The igneous geology of granitic rocks of Hub Kapong and Hua Hin areas: Project paper number 6, Granite Project, p. Geological Survey Division, Department of Mineral Resources.
    Reche, J., and Martinez, F. J., 1996, GPT: An excel spreadsheet for thermobarometric calculations in metapelitic rocks: Computers & Geosciences, v. 22, no. 7, p. 775-784.
    Reddy, S. M., and Potts, G. J., 1999, Constraining absolute deformation ages: the relationship between deformation mechanisms and isotope systematics: Journal of Structural Geology, v. 21, no. 8-9, p. 1255-1265.
    Rubatto, D., 2002, Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism: Chemical Geology, v. 184, no. 1-2, p. 123-138.
    -, 2017, Zircon: The Metamorphic Mineral: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 261-295.
    Scaillet, B., Pichavant, M., and Roux, J., 1995, Experimental Crystallization of Leucogranite Magmas: Journal of Petrology, v. 36, no. 3, p. 663-705.
    Schaltegger, U., Fanning, C. M., Günther, D., Maurin, J. C., Schulmann, K., and Gebauer, D., 1999, Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence: Contributions to Mineralogy and Petrology, v. 134, no. 2, p. 186-201.
    Schneider, D. A. E., M. A.; Kidd, W. S. F.; Asif Khan, M.; Seeber, L.; Zeitler, P. K., 1999, Tectonics of Nanga Parbat, western Himalaya: Synkinematic plutonism within the doubly vergent shear zones of a crustal-scale pop-up structure: Geology, v. 27, no. 11, p. 999-1002.
    Searle, M. P., 2006, Role of the Red River Shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia: Journal of the Geological Society, v. 163, no. 6, p. 1025-1036.
    Searle, M. P., and Morley, C. K., 2011, Tectonic and thermal evolution evolution of Thailand in the regional context of SE Asia., in Ridd , M. F., Barber , A. J., and Crow , M. J., eds., Geology of Thailand, Geological Society, London, p. 535-565.
    Searle, M. P., Noble, S. R., Cottle, J. M., Waters, D. J., Mitchell, A. H. G., Hlaing, T., and Horstwood, M. S. A., 2007, Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks: Tectonics, v. 26, no. 3.
    Searle, M. P., Whitehouse, M. J., Robb, L. J., Ghani, A. A., Hutchison, C. S., Sone, M., Ng, S. W.-P., Roselee, M. H., Chung, S. L., and Oliver, G. J. H., 2012, Tectonic evolution of the Sibumasu-Indochina terrane collision zone in Thailand and Malaysia: constraints from new U-Pb zircon chronology of SE Asian tin granitoids: Journal of the Geological Society, v. 169, no. 4, p. 489-500.
    Searle, M. P., Yeh, M.-W., Lin, T.-H., and Chung, S.-L., 2010, Structural constraints on the timing of left-lateral shear along the Red River shear zone in the Ailao Shan and Diancang Shan Ranges, Yunnan, SW China: Geosphere, v. 6, no. 4, p. 316-338.
    Sevastjanova, I., Clements, B., Hall, R., Belousova, E. A., Griffin, W. L., and Pearson, N., 2011, Granitic magmatism, basement ages, and provenance indicators in the Malay Peninsula: Insights from detrital zircon U-Pb and Hf-isotope data: Gondwana Research, v. 19, no. 4, p. 1024-1039.
    Sevastjanova, I., Hall, R., Rittner, M., Paw, S. M. T. L., Naing, T. T., Alderton, D. H., and Comfort, G., 2016, Myanmar and Asia united, Australia left behind long ago: Gondwana Research, v. 32, p. 24-40.
    Shand, S. J., 1947, Eruptive rocks: their genesis, composition, classification, and their relation to ore-deposits, with a chapter on meteorites, T. Murby.
    Shellnutt, J. G., Lee, T. Y., Torng, P. K., Yang, C. C., and Lee, Y. H., 2016, Late Cretaceous intraplate silicic volcanic rocks from the Lake Chad region: An extension of the Cameroon volcanic line?: Geochemistry, Geophysics, Geosystems, v. 17, no. 7, p. 2803-2824.
    Sherlock, S. C., Watts, L. M., Holdsworth, R. E., and Roberts, D., 2004, Dating fault reactivation by Ar/Ar laserprobe: an alternative view of apparently cogenetic mylonite-pseudotachylite assemblages: Journal of the Geological Society, v. 161, no. 3, p. 335-338.
    Sinclair, G., 1997, A study of the Praniburi Formation and Khao Tao Formation: The International Conference on Stratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific in Bangkok, Thailand, p. 337-345.
    Smith, M., Chantraprasert, S., Morley, C. K., and Cartwright, I., 2007, Structural geometry and timing of deformation in the Chainat duplex, Thailand: Geological Society, London, Special Publications, v. 290, no. 1, p. 305-323.
    Sone, M., and Metcalfe, I., 2008, Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny: Comptes Rendus Geoscience, v. 340, no. 2-3, p. 166-179.
    Sone, M., Metcalfe, I., and Chaodumrong, P., 2012, The Chanthaburi terrane of southeastern Thailand: stratigraphic confirmation as a disrupted segment of the Sukhothai Arc: Journal of Asian Earth Sciences, v. 61, p. 16-32.
    Song, Y., Su, L., Dong, J., Song, S., Allen, M. B., Wang, C., and Hu, X., 2020, Detrital zircons from Late Paleozoic to Triassic sedimentary rocks of the Gongshan-Baoshan Block, SE Tibet: Implications for episodic crustal growth of Eastern Gondwana: Journal of Asian Earth Sciences, v. 188, p. 104106.
    Spell, T. L., and McDougall, I., 2003, Characterization and calibration of 40Ar/39Ar dating standards: Chemical Geology, v. 198, no. 3–4, p. 189-211.
    Stipp, M., Stünitz, H., Heilbronner, R., and Schmid, S. M., 2002, The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C: Journal of Structural Geology, v. 24, no. 12, p. 1861-1884.
    Stormer, J. C., and Whitney, J. A., 1985, Two feldspar and iron-titanium oxide equilibria in silicic magmas and the depth of origin of large volume ash-flow tuffs: American Mineralogist, v. 70, no. 1-2, p. 52-64.
    Stussi, J. M., and Cuney, M., 1996, Nature of Biotites from Alkaline, Calc-alkaline and Peraluminous Magmas by Abdel-Fattah M. Abdel-Rahman: A Comment: Journal of Petrology, v. 37, no. 5, p. 1025-1029.
    Tapponnier, P., Peltzer, G., Ledain, A. Y., Armijo, R., and Cobbold, P., 1982, Propagating Extrusion Tectonics in Asia - New Insights from Simple Experiments with Plasticine: Geology, v. 10, no. 12, p. 611-616.
    Thatcher, W., 2007, Microplate model for the present-day deformation of Tibet: Journal of Geophysical Research: Solid Earth, v. 112, no. B1, p. B01401.
    Thompson, A. B., 1976, Mineral reactions in pelitic rocks; II, Calculation of some PTX (Fe-Mg) phase relations: American Journal of Science, v. 276, no. 4, p. 425-454.
    Ueno, K., Gondwana/Tethys divide in East Asia; solution from Late Paleozoic foraminiferal paleobiogeography, in Proceedings Proceedings of the International Symposium on Shallow Tethys, Chiang Mai University, Chiang Mai, 1999, Volume 5, p. 45-54.
    Ueno, K., and Hisada, K.-i., 2001, The Nan-Uttaradit-Sa Kaeo Suture as a Main Paleo-Tethyan Suture in Thailand: Is it Real?: Gondwana Research, v. 4, no. 4, p. 804-806.
    Upton, D., 1999, A regional fission-track study of Thailand: Implications for thermal history and denudation.: Unpublished PhD thesis, Birkbeck College, University of London.
    Usuki, T., Lan, C. Y., Wang, K. L., and Chiu, H. Y., 2013, Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U-Pb ages and Hf isotopes of detrital zircons: Tectonophysics, v. 586, p. 145-159.
    Vimuktanandana, S., 1999, Geological Map of Thailand: Geological survey division, Department of mineral resources, scale 1 : 2,500,000.
    Voegelé, V., Cordier, P., Sautter, V., Sharp, T. G., Lardeaux, J. M., and Marques, F. O., 1998, Plastic deformation of silicate garnets: II. Deformation microstructures in natural samples: Physics of the Earth and Planetary Interiors, v. 108, no. 4, p. 319-338.
    Wang, C., Liang, X., Foster, D. A., Fu, J., Jiang, Y., Dong, C., Zhou, Y., Wen, S., and Van Quynh, P., 2016a, Detrital zircon U-Pb geochronology, Lu-Hf isotopes and REE geochemistry constrains on the provenance and tectonic setting of Indochina Block in the Paleozoic: Tectonophysics, v. 677-678, p. 125-134.
    Wang, S., Mo, Y., Wang, C., and Ye, P., 2016b, Paleotethyan evolution of the Indochina Block as deduced from granites in northern Laos: Gondwana Research, v. 38, p. 183-196.
    Wang, Z., and Ji, S., 1999, Deformation of silicate garnets; brittle-ductile transition and its geological implications: The Canadian Mineralogist, v. 37, no. 2, p. 525-541.
    Warren, C. J., Hanke, F., and Kelley, S. P., 2012, When can muscovite 40Ar/39Ar dating constrain the timing of metamorphic exhumation?: Chemical Geology, v. 291, p. 79-86.
    Watkinson, I., Elders, C., Batt, G., Jourdan, F., Hall, R., and McNaughton, N. J., 2011, The timing of strike-slip shear along the Ranong and Khlong Marui faults, Thailand: Journal of Geophysical Research: Solid Earth, v. 116, no. B9, p. B09403.
    Wopfner, H., 1996, Gondwana origin of the Baoshan and Tengchong terranes of west Yunnan: Geological Society, London, Special Publications, v. 106, p. 539-547.
    Yeh, M. W., Lee, T. Y., Lo, C. H., Chung, S. L., Lan, C. Y., and Anh, T. T., 2008, Structural evolution of the Day Nui Con Voi metamorphic complex: Implications on the development of the Red River Shear Zone, Northern Vietnam: Journal of Structural Geology, v. 30, no. 12, p. 1540-1553.
    Yeh, M. W., Wintsch, R. P., Liu, Y. C., Lo, C. H., Chung, S. L., Lin, Y. L., Lee, T. Y., Wang, Y. C., and Stokes, M. R., 2014, Evidence for Cool Extrusion of the North Indochina Block along the Ailao Shan Red River Shear Zone, a Diancang Shan Perspective: The Journal of Geology, v. 122, no. 5, p. 567-590.
    Zellmer, G. F., Dulski, P., and Iizuka, Y., 2012, Combined Major and Trace Element LA-ICP-MS Analysis of Compositional Variations in Simple Solid Solutions through Cross Correlation with an EPMA-Characterized Working Standard: Microscopy and Microanalysis, v. 18, no. 04, p. 852-859.
    Zhai, Q.G., Jahn, B.M., Su, L., Wang, J., Mo, X.X., Lee, H.Y., Wang, K.L., and Tang, S., 2013, Triassic arc magmatism in the Qiangtang area, northern Tibet: Zircon U–Pb ages, geochemical and Sr–Nd–Hf isotopic characteristics, and tectonic implications: Journal of Asian Earth Sciences, v. 63, p. 162-178.
    Zhang, X., Chung, S. L., Lai, Y. M., Ghani, A. A., Murtadha, S., Lee, H. Y., and Hsu, C. C., 2018, Detrital Zircons Dismember Sibumasu in East Gondwana: Journal of Geophysical Research: Solid Earth, v. 123, no. 7, p. 6098-6110.
    Zhang, X., Chung, S. L., Lai, Y. M., Ghani, A. A., Murtadha, S., Lee, H. Y., and Hsu, C. C., 2019, A 6000-km-long Neo-Tethyan arc system with coherent magmatic flare-ups and lulls in South Asia: Geology, v. 47, no. 6, p. 573-576.
    Zhang, Z., Dong, X., Santosh, M., Liu, F., Wang, W., Yiu, F., He, Z., and Shen, K., 2012, Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: Constraints on the origin and evolution of the north-eastern margin of the Indian Craton: Gondwana Research, v. 21, no. 1, p. 123-137.
    Zhu, D. C., Wang, Q., Chung, S. L., Cawood, P. A., and Zhao, Z. D., 2019, Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma: Geological Society, London, Special Publications, v. 483, no. 1, p. 583-604.
    Zhu, D. C., Zhao, Z. D., Niu, Y., Dilek, Y., Wang, Q., Ji, W. H., Dong, G. C., Sui, Q. L., Liu, Y. S., Yuan, H. L., and Mo, X. X., 2012, Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin: Chemical Geology, v. 328, p. 290-308.

    下載圖示
    QR CODE