簡易檢索 / 詳目顯示

研究生: 黃茂榕
Huang Mao-Jung
論文名稱: 整合自組裝奈米球微影與光輔助電化學蝕刻之奈米柱狀陣列製作技術
Nanopillar array fabrication by integrating self-assembly nanosphere lithography and photo-assisted electrochemical etching technique
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 113
中文關鍵詞: 奈米柱奈米球光輔助電化學蝕刻自組裝
英文關鍵詞: nanopillar, nanosphere, electrochemical etching, self-assembly
論文種類: 學術論文
相關次數: 點閱:312下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究結合奈米球微影以及光輔助電化學蝕刻兩項技術之優點,用於製作高深寬比的奈米柱狀陣列。聚苯乙烯奈米球可藉由材料本身的自組裝效應,能輕易定義出奈米等級的圖形陣列,並可由球體尺寸的選擇與堆積層數的控制,有效地定義圖案形狀以及圖案尺寸,因此稱為奈米球微影術。同時,本研究將採用光輔助電化學蝕刻,以滿足奈米柱高深寬比的蝕刻需求,此技術有著易於形成奈米級孔洞的優點,其蝕刻深度與寬度之比更可達到250:1,優於感應耦合電漿離子蝕刻術(Inductively coupled plasma reactive ion etching, ICP-RIE)的蝕刻效果。兩項技術的結合可代替如電子束(Electron beam)、深紫外光(Deep ultraviolet, DUV)、X光(X-ray)微影技術,與感應耦合電漿離子蝕刻技術等昂貴的設備,因此非常適合用於製作高深寬比之奈米柱結構。
    實驗的結果証實利用旋轉塗佈搭配震盪塗佈的方式,可將奈米球規則地排列於矽基板上,並且定義出單層與雙層奈米等級的圖案。而在光輔助電化學蝕刻的實驗中,証實了在添加界面活性劑的作用下,蝕刻蝕刻液的接觸角可降低至15度,具有超親水性的特性,並大幅改善擴孔現像,使得奈米級的高深寬比孔洞能夠輕易的產生。當使用5 V的蝕刻電壓與HF濃度2.5 wt%的蝕刻液,經過5分鐘的蝕刻後,能夠產生高度6.2 m,直徑為90 nm的高深寬比孔洞,而孔洞的深寬比可達到68:1。在光輔助電化學蝕刻中,當孔洞底端氟離子數量遠少餘電洞數量,孔洞側壁的蝕刻現象將非常明顯,並且蝕刻深度則開始隨著電壓的增加而減少。本實驗目前可製作出高度為1m深寬比達20:1~14:1的奈米柱。奈米柱將隨著奈米球的定義而排列,因此具有陣列化的排列現象。

    關鍵字:奈米柱,奈米球,光輔助電化學蝕刻,自組裝。

    The research has developed a novel method of Nanopillar array through the combination of integrating self-assembly nanosphere lithography and photo-assisted electrochemical etching technique.
    The self-assembly nanosphere lithography technique can be used to define nano-pattern array by the novel coating method. The novel coating method of nanosphere can regular arrange nanosphere in some region of whole 1 cm2 wafer.
    In experiment of photo-assisted electrochemical etching, surfactant can reduce contact angle of electrolyte and obtain high aspect ratio of nanohole easily. The highest aspect ratio of nanohole is 68:1. We have finished the novel fabrication process of nanopillar array without expensive equipments. Nanopillar can regular arranged, which dimensions is 70 nm~50 nm wide and 1000 nm tall (aspect ratio, 14~20:1).

    Keywords: nanopillar, nanosphere, electrochemical etching, self-assembly.

    摘 要 Ⅰ 總目錄 Ⅲ 圖目錄 Ⅴ 表目錄 Ⅸ 第一章 緒論 1.1 前言 1 1.2 微機電系統簡介 2 1.3 奈米科技簡介 4 1.3.1奈米科技之市場前景 4 1.3.2奈米柱應用簡介 5 第二章 文獻回顧 2.1 奈米柱製作方法 13 2.1.1 黃光微影蝕刻法 13 2.1.2 自組裝微影蝕刻法 16 2.1.3 氣液固法 19 2.1.4 模板成形法 21 2.2 微影技術 24 2.3 光輔助電化學蝕刻術 31 2.4 研究動機 39 第三章 實驗設計與規劃 3.1 實驗規劃 40 3.2 實驗製程43 3.3.1 奈米球微影製程 43 3.3.2 光輔助電化學蝕刻製程 48 3.3.3 其餘製程 49 3.3 實驗設備 52 第四章 結果與討論 4.1 奈米球微影製程 60 4.2 光輔助電化學蝕刻製程 72 4.2.1 界面活性劑的影響 72 4.2.2 有無蝕刻罩幕的蝕刻效果比較 81 4.2.3 蝕刻時間與蝕刻率的關係 86 4.2.4 蝕刻電壓與蝕刻率的關係 93 4.3柱體成形製程 100 第五章 結論 104 第六章 未來展望 105 6.1 檢測規劃 106 參考文獻 109

    參考文獻
    1.楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, pp.142 (2003).
    2.楊啟榮, "微機電系統技術導論", 國立台灣師範大學上課講義 (2001).
    3.川合知二, "圖解奈米科技", 工業技術研究院, pp. 17 (2002).
    4.奈米國家型科技計劃內容, "ttp://nano-taiwan.sinica.edu.tw/".
    5.成章瑜, "新科學創造台灣競爭力", 遠見雜誌, 11月號, pp. 81-84 (2002).
    6.J. W. Du, "New Additive to Enhance Surface Cleanability", publish by BYK-Chemie (2003).
    7.G. Pirio, P. Legagneux, D. Pribat, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, "Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode", Nanotechnology, Vol. 13, pp. 1-4 (2002).
    8.A. G. Nassiopoulos, S. Grigoropoulos, E. Gogolides, D. Papadimitriou, "Visible luminescence from one- and two-dimensional silicon structures produced by conventional lithographic and reactive ion etching techniques", Applied Physics Letters, Vol. 66, issue 9, pp. 1114-1116 (1995).
    9.H. G. Teo, M. B. Yu, J. Singh, N. Ranga, J. Li, W. C. Yew, A. Q. Liu, "Realization of high aspect ratio nanopillar type photonic crystal by deep reactive ion etching", 2004 Digest of the LEOS Summer Topical Meetings, pp. 83-84 (2004).
    10.N. Kaji, Y. Tezuka, Y. Takamura, M. Ueda, T. Nishimoto, H. Nakanishi, Y. Horiike, Y. Baba, "Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field", Analytical Chemistry, Vol. 76, pp. 15-22 (2004).
    11.T. Tada, A. Hamoudi, T. Kanayama, K. Koga, "Spontaneous production of 10-nm Si structures by plasma etching using self-formed masks", Applied Physics Letters, Vol. 70, pp. 2538-2540 (1997).
    12.P. A. Lewis, H. Ahmed, T. Sato, "Silicon nanopillars formed with gold colloidal particle masking", Journal of Vacuum Science and Technology B, Vol. 16, issue 6, pp. 2938 (1998).
    13.Y. K. Hong, J. H. Bahng, G. Lee, H. Kim, W. Kim, S. Lee, J. Y. Koo, J. I. Park, W. R. Lee, J. Cheon, "Facile fabrication of 2-dimensional arrays of sub-10 nm single crystalline Si nanopillars using nanoparticle masks", Chemical Communications, issue 24, pp. 3024-3035 (2003).
    14.C. W. Kuo, J. Y. Shiu, P. Chen, G. A. Somorjai, "Fabrication of size tunable large-area periodic silicon nanopillar arrays with sub-10-nm resolution", Journal of Physical Chemistry B, Vol. 107, pp. 9950-9953 (2003).
    15.P. Yang, "Controlled growth of ZnO nanowires and their optical properties", Advanced Functional Materials, Vol. 12, issue 5, pp. 323-331 (2002).
    16.J. L. Taraci, J. W. Dailey, T. Clement, D. J. Smith, J. Drucker, S. T. Picraux, "Nanopillar growth mode by vapor-liquid-solid epitaxy", Applied Physics Letters, Vol. 84, pp. 5302-5304 (2004).
    17.M. Jaffe, "High performance synthetic fibers for composites", Repot of the Committee on Engineering and Technical Systems, pp. 89 (1992).
    18.J. Liang, H. Chik, J. Xu, "Nonlithographic fabrication of lateral superlattices for nanometric electromagnetic-optic applications", Selected Topics in Quantum Electronics, Vol. 8, issue 5, pp. 998-1008 (2002).
    19.C. W. Kuo, L. Feng, J. Zhai, G. Wang, Y. Song, L. Jiang, D. Zhu, "Large-area fabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer", ChemPhysChem, Vol. 5, issue 5, pp. 750-753 (2004).
    20.P. Silverman, "Manufacturing with EUV", (2000).
    21.T. Brunner, "Pushing the limits of lithography for IC production", Electron Devices Meeting, 1.2.1-1.2.5 (1997).
    22.L. R. Harriott, "Limits of lithography", proceedings of the IEEE, Vol. 89, issue 3, pp. 366-374 (2001).
    23.S. Tedesco, "Next generation lithography: the challenges of nano lithography", Minatec Innovative centre (2003).
    24.T. Matsuo, M. Endo, S. Kishimulra, A. Misaka, M. Sasago, "Lithography solution for 65-nm node system LSIs", 2002 VLSl Technology Digest of Technical Papers, pp. 196-197 (2002).
    25.A. R. Reinberg, "Etching and lithography running neck and neck", Circuits and Devices Magazine, Vol. 9, issue 1, pp. 24-29 (1993).
    26.A. Uhir, "Electrolytic shapping of germanium and silicon", Bell System Technical Journal, Vol. 35, pp. 333-341 (1956).
    27.Y. Watanabe, Y. Arita, T. Yokoyama, Y. Igarashi, "Formation and properties of porous silicon and its application", Journal of the Electrochemical society, Vol. 122, pp. 1351-1358 (1975).
    28.C. Pickering, M. J. J. Beale, D. J. Robbins, P. J. Pearson, R. Greef, "Optical studies of the structure of porous films formed in p-type degenerate and non-degenerate silicon", Journal of Physics C: Solid State Physics, Vol. 17, pp. 6535-6552 (1984).
    29.V. Lehmann, U. Gosele, "Porous silicon formation a quantum wire effect", Applied Physics Letter, Vol. 58, issue 8, pp. 856-858 (1991).
    30.A. Richter, "Current-induced light-emission from a porous silicon device", IEEE electron device letter, Vol. 12, issue 12, pp. 691-692 (1991).
    31.V. Lehmann, H. Fll, "Formation mechanism and properties of electrochemically etched tranches in n-type silicon", Journal of the Electrochemical Society, Vol. 137, pp. 653-658 (1990).
    32.V. Lehmann, U. Grning, "The limits of macropore array fabrication", Thin Solid Films, Vol. 297, pp.13-17 (1997).
    33.V. Lehmann, "The physics of macropore formation in low-doped n-type silicon", Journal of the Electrochemical Society, Vol. 140, pp. 2836-2843 (1993).
    34.M. D. B. Charlton, H. W. Lau, G. J. Parker, "High aspect ratio photo-assisted electro-chemical etching of silicon and its application for the fabrication of quantum wires and photonic band structures", Microengineering Applications in Optoelectronics, pp. 1-9 (1996).
    35.V. Lehmann, "Porous silicon formation and other photoelectrochemical effects at silicon electrodes anodized in hydrofluoric acid", Applied Surface Science, Vol. 106, pp. 402-405 (1996).
    36.S. Izuo, H. Ohji, P. J. French, "A novel electrochemical etching technique for n-type silicon", Sensors and Actuators A, Vol. 97-98, pp. 720-724 (2002).
    37.G. Barillaro, A. Nannini, M. Piotto, "Electrochemical etching in HF solution for silicon micromachining", Sensors and Actuators A, Vol. 102, pp. 195-201 (2002).
    38.G. D. Arrigo, S. Coffa, C. Spinella, "Advanced micromachining processes for micro-opto-electromechanical components and devices", Sensors and Actuators A, Vol. 99, pp. 112-118 (2002).
    39.H. Ohji, P. J. Trimp, P. J. French, "Fabrication of free standing structure using single step electrochemical etching in hydrofluoric acid", Sensors and Actuators, Vol. 73, pp. 95-100 (1999).
    40.R. L. Smith, S. D. Collins, "Porous silicon formation mechanisms", Journal of Applied Physics. Vol. 71, issue 8, pp. R1-R22 (1992).
    41.V. Lehmann, "Porous silicon-a new material for MEMS", Proceedings of 1996 MEMS, pp. 1-6 (1996).
    42"Material safety data sheet", Polysciences Inc.

    QR CODE