研究生: |
吳振堂 |
---|---|
論文名稱: |
HAYNES 230超合金銲接特性之研究 A Study of weldability characteristic of HAYNES 230 Superalloys |
指導教授: |
許良明
Xu, Liang-Ming 周長彬 Zhou, Chang-Bin |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | Haynes 230 、超合金 、銲接特性 、熱裂縫 |
英文關鍵詞: | Haynes 230, superalloys, weldability, hot cracking |
論文種類: | 學術論文 |
相關次數: | 點閱:334 下載:28 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在軍用飛行器及工業用渦輪機等高溫性能要求日漸嚴苛之下,一般合金材料實難以滿足其需求。但具有高溫強度及高溫穩定性、耐氧化腐蝕性、抗高溫潛變的超合金,即具有重要地位。而Haynes 230超合金為鎳鉻鎢鉬超合金,具有極佳的高溫特性,在高溫嚴苛環境仍具有優異的性質,是一極佳的研究對象。
本研究針對Haynes 230超合金施以惰性氣體鎢極電弧銲(GTAW)及電漿銲(PAW)後,另外本研究使用可調應變評估Haynes 230超合金銲接熱裂縫敏感性。並在銲後熱處理設計,透過微硬度試驗、拉伸試驗、光學顯微組織觀察及掃瞄式電子顯微鏡觀察,探討銲件之機械性質及分析銲件微觀金相組織結構,藉此找出較佳的銲接特性及較佳的銲接熱處理方式,以期得到最佳的銲接設計。
研究結果顯示,在點銲可調應變試驗中, Haynes 230超合金的裂縫隨著外加應變的增加而增加;但不會隨著熱循環次數的增加而增加。經微硬度試驗,填料試片的硬度高於無填料銲件。經完全固溶熱處理銲件伸長率大幅提昇,但抗拉強度、降伏強度及微硬度卻降低。然而實施應力釋放熱處理則使銲件抗拉強度增加,尤其是填料銲件的抗拉強度、降伏強度、伸長率等機械性質皆比未熱處理之銲件佳。經由SEM觀察點銲可調應變裂縫破斷面組織,銲道熔融區為凝固熱裂縫而熱影響區為液化裂縫。 然而銲件拉伸試驗破斷面經由SEM觀察,不論歷經何種熱處理方式,銲件之破斷面均呈現延性破壞之現象。
Superalloys Haynes 230 is one of several high strength precipitated hardened Ni-base superalloys suitable for service in the high temperature range. It has excellent corrosion and oxidation resistance as well as good tensile, fatigue, and creep properties at elevated temperature. TIG welding is one of the major welding processes which give a full penetrated, high-quality weldment. There are welding problems such as hot cracking and reduction of strength in the HAZ in the Ni-base superalloys.
The objective of this research project is to determine the optimum welding parameters which can obtain full and uniform penetration of the weld fusion zone in TIG weldment of superalloys Haynes 230. Mechanical properties including tensile test and microhardness test were conducted. Metallurgical examination, X-ray analysis, and SEM observation were also used for microstructure analysis. Several heat treatments were conducted to determine the optimum condition to recovery the strength in the HAZ. In order to compare the hot cracking susceptibility of Haynes 230 and Inconel 718, a newly developed Varestraint testing machine was utilized.
From the results of Varestraint test, the total crack length increases with the increase of augmented strain. But the total crack lengths have not been affected by multiple thermal cycling. The microhardness of fusion zone with filler metal is higher than the fusion zone that without filler metal. The ductility of weldment could be enhanced by solution heat treatment but ultimate tensile strength and yield strength were decreased. After stress relief heat treatment, the ultimate tensile strength, yield strength and ductility are better than the weldment without heat treatment. From the observation of SEM fractography results, the fracture surface of cracking have displayed solidification cracking in the fusion zone and liquation cracking in the heat affected zone. The ductile fracture surface was observed in all tensile tested specimens.
一、 中文部份:
Reed, R. E. & Abbaschian, H. R. (民89)。物理冶金(劉偉隆等譯)。台北市:全華。(原書發行於1973)
王振欽編(民74)。銲接學。高雄:登文。
朱登雄(民78)。銲接龜裂與其防止對策(2)─高溫龜裂。機械月刊,第10期,頁122-126。
呂登復(民73)。電子探針微區分析儀EMPA。科儀新知,第6卷第3期,頁75-86。
汪建民主編(民87)。材料分析。 新竹市:中國材料學會。
周長彬等(民88)。銲接學。台北市:全華書局。
周長彬等(民92)。Haynes 230超合金銲接性及熱裂性簡介。銲接與切割,第13卷第3期,頁22-26。
孟繼洛(民79)。機械材料。台北市:曉園。
林后堯等(民91)。多功能可調應變試驗機之開發及其應用研究。中華民國銲接協會91年度銲接論文發表會,頁8-13。
林樹均等(民79)。材料工程實驗與原理。台北巿:全華。
韋孟育編(民81)。材料實驗方法-金相分析技術。台北市:全華。
陳皇鈞譯(民75)。材料科學與工程。台北市:曉園。
劉國雄等(民88)。機械材料科學。台北市:全華。
蔡丕椿等(民88)。材料科學與工程。台北市:全華書局。
龔伯康譯(民81)。現代銲接學。台北巿:徐氏基金會。
二、英文部份:
AWS, (1991). Welding Process. Welding Handbook 8th Ed, 2, pp. 75-89.
Baeslack, W. A., Ⅲ, Lippold, J. C., & Savage, W. F. (1979). Unmixed Zone Formation in Austenitic Stainless Steel Weldments. Welding Journal, 58(6), pp. 168s-176s.
Borland, J. C., & Younger, R. N. (1960). Some aspects of cracking in welded Cr-Ni austenitic steels. British Welding Journal, 6(1), pp. 9-46.
Borland, J. C., & Younger, R. N. (1960). Generalized Theory of Super-Solidus Cracking in Welds (And Casting). British Welding Journal, 7(8), pp. 508-512.
Bradley, E. F. (1988). Superalloys: a technical guide, Metals Park: ASM International.
Cary, H. B. (1994). Modern welding technology. New Jersey, Prentice Hall Inc.
Connor, L. P. (1987). Welding Handbook. Miami.
David, S. A. (1986). Advances in Welding Science and Technology. Oak Ridge, Tennessee.
Fukuhisa, Matsuda, (1990). Keynote Address Solidification Crack Susceptibility of Weld Metal. Conference on Trends in Welding Research: Recent trends in welding science and technology, Materials Park, Ohio: ASM International,
pp. 127-136.
Ganesan, P., Smith, G. D., & Yates, D. H. (1995). Performance of Inconel Alloy 617 in Actual and Simulated Gas Turbine Environments, Advanced Mater. And Manu. Process, 10(5), pp. 925-938.
Guinier, Andre (1989). The solid state: from superconductors to superalloys. International Union of Crystallography: Oxford, Oxford University Press, New York.
Hemsworth, B., Bohiszewski, T., & Eaton, N. F. (1969). Classification and Definition of High Temperature Welding Cracks in Alloys. Metal Construction, & Brit. W. J., 1(2), pp. 5-16.
Jones, R. A. (1990). High Alloy, Thin-Selection Baskets Reduce Vacuum Cooling Time, Heat treating, 22 (4), pp. 21-23.
Jones, R. A. (1992). Assessing Work-Basket Alloys For Vacuum Furnaces, Heat treating, 24 (5), pp. 14-17.
Jones, R. A. (1995). Assessing Alloys For Vacuum Heat Treating, Heat treating,
2(2), pp. 39-41.
Kou, Sindo, (1987). Welding metallurgy. New York: Wiley.
Lancaster, J. F. (1965). Metallurgy of Welding. Cambridge England: Abington Publishing.
Lancaster, J. F. (1986). The Physics of welding. New York.
Lang, E. (1989). The role of active elements in the oxidation behaviour of high temperature metals and alloys. London and New York: Elsevier Applied Science.
Olson, D. L., Dixon, R., & Liby, A. L. (1989). Welding: theory and practice. New York: Sole distributors for the USA and Canada, Elsevier Science Pub. Co.
Rothman, M. F. (1990). Pressure Vessel Code Construction Capabilities For a Nickel-Chromium-Tungsten-Molybdenum Alloy, Pressure Vessels and Piping Conference: New alloys for pressure vessels and piping New York: American Society of Mechanical Engineers, pp. 179-187.
Savage, W. F., & Lundin, C. D. (1965). The Varestraint Test, Welding, 44(10),
pp. 433-442.
Sims, C. T., Stoloff, N. S., & Hagel, W. C. (1972). The Superalloys, New York: General Electric Company.
Sims, C. T., Stoloff, N. S., & Hagel, W. C. (1987). SuperalloysⅡ, New York: A wiley-Interscience Publication.
Starink, M. J., & Thomson, R. C. (2001). The Effect of High Temperature Exposure on Dendritic Segregation in a Conventionally Cast Ni Based Superalloy, Jounal of Materials Science, 36, pp. 5603-5608.
Thakur, A., Vecchio, K. S., & Nasser, S. N. (1996). Bauschinger Effect in Haynes 230 Alloy, Influence of Strain Rate and Temperature. Metal. And Mete. Tran. A, 27A(7), pp. 1739-1748.
Vecchio, K. S., Fitzpatrick, M. D., & Klarstrom, D. (1995). Influence of Subsolvus Thermomechanical Processing on the Low-Cycle Fatigue Properties of Haynes 230 Alloy, Metallurgical and Materials Transactions A, 26A(3),
pp. 673-689.
Walter, J. L., Jackson, M. R., & Sims, C. T. (1988). Alloying. Metals Park, Ohio: Carnes Publication.
Whittenberger, J. D. (1994). Tensile Properties of Haynes 230 and Inconel 617 after Long Exposure to LiF-22CaF2 and Vacuum at 1093K. Journal of Materials Engineering and Performance, 3(6), pp. 763-774.