簡易檢索 / 詳目顯示

研究生: 胡政德
Hu, Cheng-Te
論文名稱: 準教師數學建模歷程分析研究-以Voronoi圖為例
指導教授: 左台益
Tso, Tai-Yih
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 129
中文關鍵詞: 數學建模認知歷程多重表徵動態幾何
論文種類: 學術論文
相關次數: 點閱:269下載:68
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主旨在探討準教師數學建模的歷程。依據此目的,選擇某師範大學數學系26位準教師作為研究對象。在實驗活動中將其分為五組,以小組討論的方式進行。從準教師數學建模過程中錄音、錄影及原案資料,分析準教師數學建模的歷程。
    研究方法採取質性的研究方式,以質的詮釋性研究探究準教師數學建模的機制。將數學建模過程分成「抽象化」、「形式化」與「系統化」三個部分作為分段分析。主要研究結果如下:
    1. 「抽象化」過程主要的影響因素在於數學經驗的提取以及考慮因素的複雜性。準教師在提取數學經驗以及簡化因素下的小組較易形成理想模式。
    2. 「形式化」過程包含了模式表徵的轉換,在此過程中模式的操作以及數學知識的連結是形成數學模式與操作的重要關鍵
    3. 動態幾何軟體提供準教師可以對理論模式進行模擬與操作及猜測與驗證。而由此所發出展的輔助元件與數學概念交互影響促使準教師建構系統化的結構觀點。
    4. 在建構模式過程中,從複雜情境到數學模式中間有兩種不同的情境模式:物件-模式與操作-模式。情境模式蘊含著形成數學模式的概念。
    依據研究之結果,建議未來進行數學建模活動或教學中,應考量學生的經驗,是否激發學生提取數學經驗以及是否能夠提供數學概念連結的機會。未來的研究則可以針對數學建模能力的發展或從不同數學單元,以不同的電腦軟體等方向進行相關研究。

    目錄 i 附表目次 ii 附圖目次 iii 附錄目次 v 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 6 第三節 名詞界定 8 第貳章 數學建模理論 10 第一節 數學建模的意義 10 第二節 數學建模相關文獻探討 21 第三節 科學探究 25 第四節 問題解決 29 第五節 動態幾何軟體之相關研究 31 第參章 認知理論架構 35 第一節 信息處理理論 37 第二節 抽象化 43 第三節 模式的表徵形式 46 第肆章 研究方法 49 第一節 研究設計理念 49 第二節 研究工具 52 第三節 研究流程與限制 58 第伍章 研究結果與討論 60 第一節 準教師從複雜情境中建構模式之過程 60 第二節 準教師在數學世界中操作模式的過程 71 第三節 準教師在電腦環境中模擬模式的過程 84 第陸章 結論與建議 94 第一節 數學建模過程的機制 94 第二節 模式與表徵形式 98 第三節 電腦軟體在建模過程中的角色 101 第四節 建議 102 參考文獻 106 一、中文部分 106 二、英文部分 106 附錄 112

    一、中文部分
    左台益、蔡志仁(2001)。高中生建構橢圓多重表徵之認知特性。科學教育學刊。9(3),281-297。
    吳佳蓮(2005)。科學探究活動中國小五年級學童科學解釋能力及認識論之研究。國立臺灣師範大學科學教育研究所碩士論文,臺北市。
    吳依芳(2003)。建模教學活動對國二學生學習線性函數概念之影響。國立臺灣師範大學數學研究所碩士論文,台北市。
    陳其英(1998)。國一數學資優生問題同構轉化能力及外在表徵對解題影響之研究。國立臺灣師範大學科學教育研究所碩士論文,臺北市。
    黃哲男(2002)。於動態幾何環境下國中生動態心像建構與幾何推理之研究。國立臺灣師範大學數學研究所碩士論文,台北市。
    楊凱琳、林福來(2006)。探討高中數學教學融入建模活動的支撐策略及促進參與教師反思的潛在機制。科學教育學刊,14(5),517-543。
    張春興 (1999)。 教育心理學:三化取向的理論與實踐(修訂版)。台北市:台灣東華書局。
    蔡志仁(2000)。動態連結多重表徵視窗環境下橢圓學習之研究。國立台灣師範大學數學研究所碩士論文,台北市。

    二、英文部分
    左台益 (2006,二月)。The Features in the Process of Mathematical Modeling with Dynamic Geometric Software: A Case Study on Potential Teachers。亞洲科學教育學術研討會暨國科會科教處成果討論會。花蓮:國立花蓮教育大學。
    Abrams, J. (2001). Teaching mathematical modeling and the skills of representation. In Cuoco, A. (Ed.) The Roles of Representation in School Mathematics (pp. 269-282). National Council of Teachers of Mathematics 2001 Yearbook. Reson, VA: National Council of Teachers of Mathematics.
    Apostel , L. (1960). Towards the Formal Study of Models in the Non-formal Sciences. Synthese, 12, 125-161.
    Balacheef, N., & Kaput, J. J. (1996). Computer-Based Learning Environments in Mathematics. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatick, & C. Laborde (Eds.), International Handbook of Mathematics Education (pp. 469-501). Dordrecht: Kluwer Academic Publishers.
    Blum, W. (2002). ICMI Study 14: Applications and modeling in mathematical education-Discussion document, Educational Studies in Mathematics 51, 149-171.
    Burkhardt, H. (1981). The real world and mathematics. University of Nottingham, Shell Centre for Mathematical Education.
    Clatworthy, N.J. (1989). Assessment at the Upper Secondary Level. In W. Blum, J. S. Berry, R. Biehler, I. D. Huntley, G. Kaiser-Messmer, & L. Profke (Eds). Applications and Modelling in learning and teaching Mathematics (pp. 60-65). Chichester, England:Ellis Horwood.
    Clements, D. H., & Battista, M.T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 437-442). New York: Macmillan.
    Colburn, A. (2000). An inquiry primer. Science Scope, 23(6), 42-44.
    de Berg, M., van Kreveld, M., Overmars, M., & Schwarzkopf, O. (Eds.). (2002). Computational Geometry: Algorithms and Applications.(Second edition). Heidelberg:Springer-Verlag.
    Damerow, P. (1996). Abstraction and representation: Essays on the cultural evolution of thinking. Dordrecht, The Netherlands: Kluwer.
    Davidov, V. V. (1990). Types of generalisation in instruction: Logical and psychological problems in the structuring of school curricula (Soviet studies in mathematics education, Vol. 2; J. Kilpatrick, Ed., J. Teller, Trans.). Reston, VA: National Council of Teachers of Mathematics. (Original work published 1972)
    Dreyfus, T. (1991). Advanced Mathematical Thinking Processes. In D. Tall(Ed.), Advanced Mathematical Thinking (pp.27-41). Holland: Kluwer.
    Dudour-Janvier, B, Bednarz, N & Belanger, M. (1987). Pedagogical Considerations Concerning the Problem of Representation. In C. Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics(pp.109-122). Hillsdale, NJ: Lawrence Erlbaum.
    Flavell, J. H. (1971). First discussant's comments: What is memory development the development of? Human Development, 14, 272-278
    Flavell, J. H. (1976). Metacognitive Aspects of Problem-solving. In L. B. Resnick (Ed.), The Nature of Intelligence. Hillsdale, NJ: Erlbaum.
    Flavell, J. H. (1979). Metacognition and Cognitive Monitoring: A New Area of Cognitive-developmental Inquiry. American Psychologist, 34 (10), 906-911.
    Flavell, J. H. (1985). Cognitive development(2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.
    Freudenthal, H. (1991). Revisiting Mathematics Education.China Lectures. Dordrecht: Kluwer Academic Publishers.
    Gagné, E. D., Yekovich, C. W., & Yekovich, F. R. (1993). The cognitive psychology of school learning (2nd ed.). New York: HarperCollins.
    Gotwals, A. W., & Songer, N. B. (2005). The symbiosis of cognition, observation, and interpretation in an assessment system for biokids. Paper presented at the American Education Research Association annual meeting.
    Hall, G. G. (1972). Modelling - a Philosophy for Applied Mathematicians. Bulletin of the Institute of Mathematics and its Applications, 8, 226-228.
    Hart, K. & Sinkinson, A. (1987). Forging the Link Between Practical and Formal Mathematics. Proceedings of the 12th Annual Conference of the International Group for Psychology of Mathematics Education, Budapest.
    Henn, H. (2007). Modelling pedagogy-overview. In W. Blum, P. Galbraith, H. Henn & M. Niss (Eds). Modelling and applications in mathematics education : the 14th ICMI study (pp. 321-324) . New York: Springer
    Henning, H. & Keune, M. (2007). Levels of modelling competencies. In W. Blum, P. Galbraith, H. Henn & M. Niss (Eds). Modelling and applications in mathematics education : the 14th ICMI study (pp. 225-232). New York: Springer.
    Hoyles, C. & Noss, R. (1992). A pedagogy for mathematical microworlds. Educational Studies in Mathematics, 23, 31-57.
    Ikeda, T. & Stephens, M. (1998). The influence of problem format on students’ approaches to mathematical modelling. In P. Galbraith, W. Blum, G. Booker & I. D. Huntley (Eds). Mathematical modelling: Teaching and assessing in a technology rich world (pp. 223-232). Chichester: Horwood Press.
    Janvier, C. (1987). Conceptions and Representation: The Circle as an Example. In C. Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics(pp.147-158). Hillsdale, NJ: Lawrence Erlbaum.
    Kaiser, G. (2005). Mathematical Modelling in School – Examples and Experiences. In Henn, H.-W. & Kaiser, G. (Eds.), Mathematikunterricht im Spannungsfeld von Evolution und Evaluation. Festband für Werner Blum, (pp.99-108). Hildesheim: Franzbecker.
    Kaiser, G. & Willander, T. (2005). Development of mathematical literacy: results of an empirical study. Teaching Mathematics and its Applications, 24(2-3), 48-60.
    Kaput, J. J. (1987). Representation Systems and Mathematics. In C. Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics(pp.19-26). Hillsdale, NJ: Lawrence Erlbaum.
    King, J. R. (1996). Geometry Through the Circle with the Geometer’s Sketchpad. Berkeley, CA: Key Curriculum Press.
    Krajcik, J. S., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3&4), 313-350.
    Lesh, R., Cramer, K., Doerr, H., Post, T. & Zawojewski, J. (2003). Using a translation model for curriculum development and classroom instruction. In R. Lesh & H. Doerr (Eds.). Beyond Constructivism. Models and Modeling Perspectives on Mathematics Problem Solving, Learning, and Teaching. (pp.35-58). Mahwah, NJ: Lawrence Erlbaum.
    Lesh, R., Hoover, M., & Kelly, A. (1993). Equity, assessment, and thinking mathematically: Principles for the design of model-eliciting activities. In I. Wirszup & R. Streit (Eds.), Development in school mathematics education around the world, Vol.3,(pp. 104-130). Reston, VA: National Council of Teacher of Mathematics.
    Lesh, R., Post, T. & Behr M. (1987). Representations and Translations among Representations in Mathematics Learning and Problem Solving. In C. Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics(pp.33-40). Hillsdale, NJ: Lawrence Erlbaum.
    Lin, F. L. & Yang, K. L. (2005). Distinctive charateristics of mathematical thinking in a non-modeling friendly environment. Teaching Mathematics and its Applications, 24(2-3), 97-106.
    Maaß, K. (2006). Barriers and opportunities for the integration of modelling in mathematics classes: results of an empirical study, Teaching Mathematics and its Applications, 24(2-3),61-74.
    Martin-Hansen, L. (2002). Defining inquiry: exploring the many types of inquiry in the science classroom. The Science Teacher, 69(2), 34-37.
    Mason, J. (1985). Thinking Mathematically, Wokingham: Addison-Wesley Publishing Company
    Mason, J. & Davis, J. (1991). Modelling with Mathematics in Primary and Secondary Schools. Geelong: Deakin University.
    Mason, J. and Johnston-Wilder, S. (2004). Fundamental Construct in Mathematics Education. London & New York:RoutledgeFalmer.
    McCrae, B. (1998). Modelling using dynamic geometry software, in Galbraith P, Blum W, Booker G and Huntley I (eds), Mathematical Modelling: Teaching and Assessing in a Technology-Rich World (pp.95-101). Chichester: Horwood Publishing.
    Mitchelmore, M. C. (2002). The role of abstraction and generalisation in the development of mathematical knowledge. In D. Edge & Y. B. Har (Eds.). Mathematics education for a knowledge-based era (Proceedings of the Second East Asia Regional Conference on Mathematics Education and the Ninth Southeast Asian Conference on Mathematics Education, Vol. 1(pp. 157-167).
    Mooney D. and Swift R. (1999). A Course in Mathematical Modeling. The Mathematical Association of America.
    Mudaly, V. & De Villiers, M. (2004, July). Mathematical Modeling and Proof. Paper presented at 10th AMESA Congress, University of the North-West, Potchefstroom.
    National Council of Teachers of Mathematics. (1998). Principles and Standards for School Mathematics: Discussion Draft. Download from http://www.ntcm.org.
    National Research Council. (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press.
    Newell, A. & Simon, H. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.
    Niss, M. (1989). Aims and scope. In W. Blum, J. S. Berry, R. Biehler, I. D. Huntley, G. Kaiser-Messmer, & L. Profke (Eds). Applications and Modelling in learning and teaching Mathematics (pp. 22-31). Chichester, England:Ellis Horwood.
    Niss, M. (2002). Mathematical competencies and the learning of mathematics: The Danish KOM project. Retrieved October 15, 2004, from http://www7.nationalacademies.org/mseb/mathematical_competencies_and_the_learning_of_mathematics.pdf.
    Noss, R. (1997), Meaning Mathematically with Computers. In T. Nunes and P. Bryant (Eds), Learning and Teaching Mathematics: an international perspective(pp.289-314). Hove : Psychology Press.
    Osta, I. (1998). Computer Technology and the Teaching of Geometry. In C. Mammana & V. Villani (Eds.), Perspectives on the Teaching of Geometry for the 21st Century (pp. 109-112). Dordrecht: Kluwer Academic Publishers.
    Peirce, C. S. (1956). The Essence of Mathematics. In J. R. Newman (Ed.) The World of Mathematics. New York: Simon and Schuster.
    Piaget, J. (1989). Psychogenesis and the history of science. (H. Feider, Trans.) New York: Columbia University Press.
    Piaget, J., & Inhelder, B. (1969). The Psychology of the Child. (H. Weaver, Trans.). New York: Basic Books. (Original work published 1966).
    Polya, J. (1957). How to solve it (2nd ed.). Garden City, NY: Doubleday Books.
    Schoenfeld, A. H.(1985). Mathematical problem solving. Orlando, FL: Academic Press.
    Schoenfeld, A. H. (1992). Learning to think mathematically: problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for Research on Mathematics Teaching and Learning(pp. 334-370). New York: MacMillan.
    Sierpinska, A. (1994). Understanding in mathematics. London: Falmer Press.
    Skemp, R. R. (1987). The Psychology of Learning Mathematics. NJ: Lawrence Erlbaum Associates.
    Stachowiak, H. (1973). Allgemeine Modelltheorie. Wien: Springer.
    Tall, D. (1992). The transition to advanced mathematical thinking: functions, limits, infinity, and proof. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 495-511). New York: Macmillan.
    Treffers, A. (1987). Three dimensions: A model of goal and theory description in mathematics education. Netherlands, Dordrecht: Reidel.
    Treilibs, V. (1979). Formulation processes in mathematical modelling. Thesis submitted to the University of Nottingham for degree of Master of Philosophy.
    Treilibs, V., Burkhardt, H., Low, B. (1980). Formulation processes in mathematical modelling. University of Nottingham, Shell Centre for Mathematical Education.
    Vergnaud, G. (1987). Conclusion. In C. Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics(pp.227-232). Hillsdale, NJ: Lawrence Erlbaum.
    Wheeler, D. (1996) , Backwards and forwards: reflections on different approach to algebra, In N. Bednarz, C. Kieran and L. Lee (Eds.), Approaches to algebra: perspectives for research and teaching (pp.317-325). Dordrecht: Kluwer.

    QR CODE