簡易檢索 / 詳目顯示

研究生: 蔡志鑫
Chih-Hsin Tsai
論文名稱: 線上濃縮技術在非水相毛細管電泳與毛細管電泳/表面增強拉曼法上的應用
Applications of on-line sample concentration techniques on nonaqueous capillary electrophoresis (NACE) and capillary electrophoresis/surface-enhanced Raman spectroscopy (CE/SERS)
指導教授: 林震煌
Lin, Cheng-Huang
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 195
中文關鍵詞: 毛細管電泳掃集蛇根鹼紫光LED低溫槽安非他命非水相電泳堆積拉曼孔雀石綠結晶紫
英文關鍵詞: capillary electrophoresis, sweeping, reserpine, violet light-emitting diode, Low-temperature bath, 3,4-Methylenedioxymethamphetamine, Nonaqueous capillary electrophoresis, Stacking, Raman spectroscopy, Malachite green, Crystal violet
論文種類: 學術論文
相關次數: 點閱:224下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功的發展了三種新的毛細管電泳分析技術。首先是成功的開拓了LED (發光二極體)在毛細管電泳分析領域的適用性。這是以市售紫光LED (405 nm) 為螢光激發光源,對血壓平(reserpine)及衍生物進行螢光偵測。使用CZE-stacking濃縮技術偵測極限可達1.6 × 10-8 M。若使用sweeping-MEKC (微胞掃集法)及CSEI-sweep-MEKC (陽離子選擇完全注射掃集MEKC法)濃縮技術時,其偵測極限分別可以達到2.1 × 10-9 M及2.1 × 10-10 M。另外藉由NDA (naphthalene-2,3-dicarboxaldehyde)做為螢光標識試劑,與多巴胺進行衍生反應以後,以螢光偵測結合MEKC及sweeping-MEKC濃縮技術進行測量,其偵測極限可達6.3 × 10-6 M及3.0 × 10-8 M。
    其次,本研究首先發展以低溫-非水相毛細管電泳的新方法。對其光學異構物±3,4-methylenedioxymethamphetamine (±3,4-MDMA)可以獲得良好的分離效果。本文詳細探討各種最佳的電泳條件,包括使用各種不同的低溫槽及毛細管內最佳化的高導電度的緩衝溶液。在CZE模式下偵測極限可以達到4.7 × 10-6 M,再結合低溫/非水相堆積線上濃縮技術(LTB/NACZE-stacking),偵測極限更可以達到5.0 × 10-9 M。此外為了增加樣品進樣量以及能夠有更窄的樣品區帶,在樣品區帶和電泳背景溶液之間加入一段高導區帶,造成溶液之間有不同的導電梯度,使得樣品進樣量相對增加。利用這些技術,亦成功的應用在真實樣品3,4-MDMA的分析上。
    最後,本研究對於非螢光性物質的偵測,亦成功的發展出新的方法。傳統上毛細管電泳法對非螢光性物質的偵測方法不外乎使用間接法,或是將非螢光性物質加以螢光衍生劑衍生後加以偵測。本研究選用非螢光性物質孔雀石綠為測試樣品,並以波長532 nm 雷射(Nd:YAG的第二倍頻波)為拉曼激發光源。在孔雀石綠定量分析上,以單光器(有效寬度0.4 nm)以及拉曼波數1616 cm-1作為收光範圍。 在毛細電泳/共振拉曼的模式下,孔雀石綠在CZE和MEKC模式下的偵測極限為1.6 × 10-5 M 和 1.1 × 10-5 M。當結合線上濃縮技術stacking及sweeping時,偵測極限可以達到3.4 × 10-7 M和5.3 × 10-9 M。而在毛細電泳/表面增強拉曼模式下,再結合線上濃縮技術stacking及sweeping,偵測極限甚至可以分別高達到4.4 × 10-8 M和1.1 × 10-9 M。本方法亦有效的應用在真實樣品的偵測上。

    Several new methods for capillary electrophoresis were developed in the study. The first work represents the applications of violet LED-induced fluorescence detection in CE separations and this suggests that the violet LED has great potential for use as a new light source in CE separations, not only for naturally fluorescent compounds (excited in violet region) but for derivatives as well. The detection limit of reserpine was determined to be 1.6 × 10-8 M by CZE-stacking and this was improved to 2.1 × 10-9 and 2.1 × 10-10 when sweeping-MEKC and CSEI-sweep- MEKC techniques were applied. In addition, dopamine labeled-NDA (naphthalene-2,3-dicarboxaldehyde) was selected as the model compound. The detection limit of dopamine was determined to be 6.3 × 10-6 and 3.0 × 10-8 by means of a MEKC and sweeping-MEKC.
    On the other hand, a low-temperature and ambient-temperature nonaqueous-stacking techniques in capillary electrophoresis are described for the first time. The low temperature bath was also applied to the separation of isomers ±3,4-methylenedioxymethamphetamine (±3,4-MDMA). 3,4-MDMA was determined at a concentration of 4.7 × 10-6 M by normal nonaqueous capillary electrophoresis (NACE) and this was improved to 5.0 × 10-9 M, when the low temperature bath/nonaqueous capillary electrophoresis-stacking (LTB/NACE-stacking) techniques was applied. Furthermore, in an attempt to increase the amount of sample injected, as well as to focus them onto a small zone, two novel buffer systems are proposed. One of these employs an “ultra-high conductivity zone”, which was inserted between the sample zone and background solution to build an unequal conductivity gradient. As a result, a large volume of sample injection can be achieved. Using these techniques, the content of 3,4-MDMA in an illicit drug and a suspect urine sample was readily detected.
    Finally, if the analyte can not emit or absorb UV/visible radiation, alternate types of detection, such as indirect fluorescence/absorbance and derivative can be used. A non-fluorescent compound (malachite green, MG) and a doubled Nd:YAG laser (532 nm, 300 mW) were selected as the model compound and light source. In order to carry out a qualitative analysis of MG, a monochromator (effective bandwidth, 0.4 nm) was used to collect the specific Raman line at 1616 cm-1. On the capillary electrophoresis-resonance Raman spectroscopy (CE-RRS) mode, the limits of detection for MG were 1.6 × 10-5 M and 1.1 × 10-5 M, respectively for CZE and MEKC modes. When the stacking and sweeping modes were applied, the LOD could be improved to 3.4 × 10-7 M and 5.3 × 10-9 M. On the capillary electrophoresis/surface-enhanced Raman spectroscopy (CE/SERS) mode, the limit of detection for MG could be improved to 4.4 × 10-8 M and 1.1 × 10-9 M, when the stacking and sweeping modes were applied, respectively. The method was also extended to the determination of MG in an actual sample.

    目錄 中文摘要..………………………………...………………….…...........I 英文摘要…………………………………………………………………...…III 目錄…..……………………………….…….…………………....…......V 圖目錄…………………………………….……………………....…...VIII 表目錄………………………………………………..………………...……..XI 第一章 緒論………………………………………………………………….1 1-1 研究目的……………..………………………………….………….……1 1-2 分析物簡介………..………………………………….………….....3 1-2-1 血壓平(reserpine)藥物…………………………………….3 1-2-2 快樂丸(3,4-MDMA)濫用藥物………………………………….5 1-2-3 孔雀石綠染料(malachite green oxalate)…………….7 1-2-4 結晶紫(crystal violet)……………………………………9 1-3 發光二極體簡介…….……………………………………….…………10 第二章 分析原理及方法……………………………………………...……11 2-1 毛細管電泳分析之發展歷程…...………………………..……….11 2-2 毛線管電泳分析之基本原理…..………………………………………15 2-2-1 電泳遷移率………………………………..……….......15 2-2-2 電滲流(EOF)……………………………………..……………17 2-2-3 管柱分離效率………………………………..……...…....20 2-2-4 分析條件之適宜性……………………………..……...……22 2-3 毛細管電泳法的分離模式..……………………………….…...……24 2-3-1 毛細管區帶電泳(CZE)……………………………………25 2-3-2 微胞電動層析法(MEKC)………………………………….27 2-4 毛細管線上濃縮技術……………………………………………….30 2-4-1 毛細管電泳線上堆積法(stacking)……………………33 2-4-2 非水相毛細管電泳線上堆積法(NACE-stacking).......35 2-4-3 冰溫/非水相毛細管電泳線上堆積法(LTB/NACE-stacking).36 2-4-4 高導區/非水相毛細管電泳線上堆積法(UHCZ/NACE-stacking)………………………………………………………………………39 2-4-5 毛細管電泳線上掃集法(sweeping)..................41 2-4-6 陽離子選擇完全注射掃集法(CSEI-sweep-MEKC).......43 2-5 拉曼與表面增強拉曼光譜分析之基本原理....................45 第三章 儀器與藥品.........................................49 3-1 毛細管電泳/紫光LED誘導螢光分析儀.......................49 3-2 冰溫/毛細管電泳螢光分析儀………………………………………….52 3-3 拉曼/毛細管電泳螢光分析儀………………………………………….54 3-4 儀器及周邊設備列表…………………………………………………..56 3-5 使用藥品列表……………………………………………………59 第四章 毛細管電泳/紫光LED誘導螢光法對reserpine之研究過程與結 論.........................................61 4-1 reserpine光譜性質之測量..............................61 4-2 毛細管區帶電泳法(CZE)之最佳化電泳條件確立...............63 4-2-1 最佳化CZE電泳條件確立..........................63 4-2-2 CZE檢量線製作…............................64 4-2-3 線上濃縮技術CZE-stacking..................................................67 4-2-4 CZE-stacking檢量線製作.....................71 4-3 微胞電動層析法(MEKC)之最佳化電泳條件確立.................74 4-3-1 最佳化MEKC電泳條件確立……......................74 4-3-2 MEKC檢量線製作…..............................76 4-3-3 線上濃縮技術sweeping-MEKC....................79 4-3-4 sweeping-MEKC檢量線製作.......................82 4-4 陽離子選擇性完全注射掃集MEKC法(CSEI-sweep-MEKC)………85 4-4-1 最佳化CSEI-sweep-MEKC電泳條件確立...............85 4-4-2 CSEI-sweep-MEKC檢量線製作.....................88 4-5 stacking、sweeping與CSEI-sweep-MEKC技術之比較……………91 4-6 結論……………………………………………………………………92 第五章 非水相毛細管電泳結合誘導螢光法對3,4-MDMA之研究過程與 結論.......................................93 5-1 3,4-MDMA光譜性質之測量...............................93 5-2 非水相毛細管電泳法(NACE)之最佳化電泳條件確立.............95 5-2-1 最佳化NACE條件確立............................95 5-2-2 NACE檢量線製作................................97 5-2-3 非水相毛細管電泳線上濃縮技術(NACE-stacking)....100 5-2-4 NACE檢量線製作...............................105 5-3 低溫/非水相毛細管線上濃縮技術(LTB/NACE-stacking)…………108 5-3-1 最佳化LTB/NACE-stacking條件確立..............108 5-3-2 LTB/NACE-stacking檢量線製作.................114 5-4 高導區帶/非水相毛細管線上濃縮技術(UHCZ/NACE-stacking)...117 5-4-1 最佳化UHCZ/NACE-stacking條件確立.............117 5-4-2 UHCZ/NACE-stacking檢量線製作.................124 5-5 非水相毛細管電泳線上濃縮技術在真實樣品上的應用...........127 5-5-1 藥粉的萃取...................................127 5-5-2 尿液的萃取-液液萃取...........................127 5-5-3 藥粉與尿液中3,4-MDMA的分析結果比較.............127 5-6 NACE、NACE-stacking、LTB/NACE-stacking與UHCZ/NACE-stacking技術之比較...................................131 5-7 結論...............................................132 第六章 毛細管電泳結合拉曼光譜對malachite green (MG)和crystal violet (CV)之研究過程與結論......................................133 6-1 分析物光譜性質之測量.......................................................133 6-1-1 MG和CV吸收光譜之測量............................133 6-1-2 奈米銀配置及吸收光譜之測量.......................136 6-1-3 MG和CV拉曼及表面增強拉曼光譜之測量...............138 6-2 毛細管電泳(CZE)之最佳化電泳條件確立....................141 6-2-1 最佳化CZE條件確立..............................141 6-2-2 CZE檢量線製作..................................142 6-2-3 線上濃縮技術CZE-stacking.......................147 6-2-4 CZE-stacking檢量線製作.........................151 6-3 微胞電動層析法(MEKC)之最佳化電泳條件確立…………………156 6-3-1 最佳化MEKC條件確立.............................156 6-3-2 MEKC檢量線製作.............................158 6-3-3 線上濃縮技術sweeping-MEKC.....................163 6-3-4 sweeping-MEKC檢量線製作.......................166 6-4 毛細管電泳線上濃縮技術在真實樣品上的應用……………………170 6-5 毛細管電泳在選擇性波長上的應用…………………………………172 6-6 stacking、sweeping技術在拉曼及表面增強拉曼模式下的比較..175 6-7 結論..…………………………………………………………………178 論文發表.................................................181 參考文獻.................................................183 附錄…………………………………………………………………………195

    參考文獻

    [1] Legendre, B. L. Jr., Moberg, D. L., Williams, D. C., Soper, S. A., J. Chromatogr. A 1997, 779, 185-194.
    [2] Gallaher, D. L. Jr., Johnson, M. E., Analyst 1999, 124, 1541-1546.
    [3] Rahavendran, S. V., Karnes, H. T., Anal. Chem. 1997, 69, 3022-3027.
    [4] Kaneta, T., Shiba, H., Imasaka, T., J. Chromatogr. A 1998, 805, 295-300.
    [5] Mank, A. J. G., Yeung, E. S., J. Chromatogr. A 1995, 708, 309-321.
    [6] Melanson, J. E., Lucy, C. A., Analyst 2000, 125, 1049-1051.
    [7] Moring, S. E., Reel, R. T., Remco, E. J. S., Anal. Chem. 1993, 65, 3454-3459.
    [8] Heiger, D. N., Herold, M., Grimm, R., Applications of Hewlett-Packard 3D Capillary Electrophoresis System, vol. 1, Hewlett-Packard, Waldbronn, 1992.
    [9] Burgi, D. S., Chien, R. L., Anal. Chem. 1991, 63, 2042-2047.
    [10] Chien, R. L., Burgi, D. S., Anal. Chem. 1992, 64, 1046-1050.
    [11] Chien, R. L., Burgi, D. S., Anal. Chem. 1992, 64, 489-496.
    [12] He, Y., Lee, H. K., Anal. Chem. 1999, 71, 995-1001.
    [13] Quirino, J. P., Terabe, S., J. Chromatogr. A 1999, 850, 339-344.
    [14] Liu, W., Lee, H.-K., Electrophoresis 1999, 20, 2475-2483.
    [15] Zhao, Y., Lunte, C. E., Anal. Chem. 1999, 71, 3985-3991.
    [16] Quirino, J. P., Terabe, S., J. Chromatogr. A 1999, 850, 339-344.
    [17] Palmer, J., Munro, N. J., Landers, J. P., Anal. Chem. 1999, 71, 1679-1687.
    [18] Quirino, J. P., Terabe, S., Science 1998, 282, 465-468.
    [19] Quirino, J. P., Terabe, S., Anal. Chem. 1999, 71, 1638-1644.
    [20] Quirino, J. P., Kim, J.-B., Terabe, S., J. Chromatogr. A 2002, 965, 357-373.
    [21] Quirino, J. P., Terabe, s., Anal. Chem. 2000, 72, 1023-1030.
    [22] Ensslin, H.K.; Kovar, K-A.; Maurer, H.H., J. Chromatogr. B 1996, 683, 189-197.
    [23] Maurer, H.H.;Bickeboeller-Friedrich, J.; Kraemer, T.; Peters, F.T.,
    Toxicol. Letters 2000, 133, 112-113.
    [24] Sadeghipour, F.; Veuthey, J.-L., J. Chromatogr. A 1997, 787, 137-143.
    [25] 管制藥品管理局/公告區/認清MDMA的真面目
    http://210.241.68.101/circular/circular_16-1.asp
    [26] 管制藥品管理局/預警宣導組/使用快樂丸保證讓你呆
    http://210.241.68.101/circular/circular_10.asp
    [27] Otsuka, S.K.; Ichikawa, K.; Tsuchiya, A.; Ando, T., Anal. Chem. 1984, 56, 111-113.
    [28] A. Cohen, B. L. Karger, J. Chromatogr. 1987, 397, 409-417.
    [29] M. M. Dittmann, G. P. Rozing, J. Chromatogr. A 1996, 744, 63-74.
    [30] Lueck, H. B., Daniel, D. C., McHale, J. L., J. Raman Spectrosc. 1993, 24, 36-370.
    [31] W. Tong, E. S. Yeung, J. Chromatogr. A 1995, 718, 177-185.
    [32] Q. Lu, G. E. Collins, Analyst 2001, 126, 429-432.
    [33] Q. Lu, G. E. Collins, Anal. Chim. Acta 2001, 436, 181-189.
    [34] S. L. Wang, X. J. Huang, Z. L. Fang, Anal. Chem. 2001, 73, 4545-4549.
    [35] N. Vachirapatama, P. Doble, Z. Yu, M. Macka, P. R. Haddad, Anal. Chim. Acta 2001, 434, 301-307.
    [36] S. Hjertén, J. Chromatogr. 1985, 347, 171-177.
    [37] A. Tiselius, Tran. Faraday Soc. 1937, 33 , 524-531.
    [38] S. Hjertén, Chromatogr. Rev. 1967, 9 , 122-219.
    [39] R. Virtanen, Acta Polytechnica Scand. 1974, 123 , 1-67.
    [40] J. F. K. Huber and J. A. R. J. Hulsman , Anal. Chim. Acta 1967, 38 , 305-313.
    [41] A. Tiselius, Tran. Faraday Soc. 1937, 33 , 524-531.
    [42] S. Hjertén, J. Chromatogr. 1985, 347, 171-177.
    [43] J. R. Mazzeo and I. S. Krell, Biotechniques 1991, 10, 638-645.
    [44] T. Wehr, LC-GC Mag. 1993, 11, 14.
    [45] A. S. Cohen and B. L. Karger, J. Chromatogr. 1987, 397, 409-417.
    [46] A. S. Cohen, A. Paulus and B. L. Karger, Chromatographia 1987, 24, 15-24.
    [47] A. S. Cohen, D. R. Najarian, A. Paulus, A. Guttman, J. A. Smith and B. L. Karger, Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 9660-9663.
    [48] H. Drossman, J. A. Luckey, A. Kostichka, J. D.Cunha and L. M. Smith, Anal. Chem. 1990, 62, 900-903.
    [49] P. Bocek and A. Chrambach, Electrophoresis 1991, 12, 1059-1061.
    [50] S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya and T. Ando, Anal. Chem. 1984, 56, 111-113.
    [51] S. Terabe, K. Otsuka and T. Ando, Anal. Chem. 1985, 57, 834-841.
    [52] S. Hjertén, J. L. Liao and K. Yao, J. Chromatogr. 1987, 387, 127-138.
    [53] A. S. Cohen and B. L. Karger, J. Chromatogr. 1987, 397, 409-417.
    [54] D. J. Rose and J. W. Jorgenson, Anal. Chem. 1988, 60, 642-648.
    [55] Huang, X.; Zare, R.N., Anal. Chem. 1991, 63, 2193-2196.
    [56] Huang, X.; Gordon, M.J.; Zare, R.N., Anal. Chem. 1988, 60, 375-377.
    [57] Kennedy, R.T.; Jorgenson, J.W., Anal. Chem. 1989, 61, 1128-1135.
    [58] Yan, C.Y.; Dadoo, R.; Zare, R.N.; Rakestraw, D.J.; Anex, D.S., Anal. Chem. 1996, 68, 2726-2730.
    [59] S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya and T. Ando, Anal. Chem. 1984, 56, 111-122.
    [60] S. Terabe, K. Otsuka and T. Ando, Anal. Chem. 1985, 57, 834-841.
    [61] S. Hjertén, J. L. Liao and K. Yao, J. Chromatogr. 1987, 387, 127-138.
    [62] D. J. Rose and J. W. Jorgenson, Anal. Chem. 1988, 60, 642-648.
    [63] S. F. Y. Li, Capillary electrophoresis 1992, chapter 1, p.1
    [64] S. Compton and R. Brownlee, Biotechniques 1988, 6, 432-440.
    [65] W. B. Hardy, J. Physiol. 1892, 24, 288-294.
    [66] W. B. Hardy, J. Physiol. 1905, 33, 273-372.
    [67] T. B. Coolidge, J. Biol. Chem. 1939, 127, 551-553.
    [68] R. A. Consden, A. H. Gorden and A. J. P. Martin, Biochem. J. 1946, 40, 33-40.
    [69] J. Porath, Biochem. Biophys. Acta. 1956, 22, 151-160.
    [70] David N. Heiger High Performance Capillary Electrophoresis - An Introduction, 1992, 2nd edition.
    [71] Krattiger, B.; Bruin, G.J.M.; Bruin, A.E., Anal. Chem. 1994, 66, 1-8.
    [72] Stefansson, M.; Novotny, M., Anal. Chem. 1994, 66, 1134-1140.
    [73] Kim, Y.; Morris, M.D., Anal. Chem. 1994, 66, 1168-1174.
    [74] Zhao, Z.; Malik, A.; Lee, M. L., Anal. Chem. 1994, 65, 2747-2752.
    [75] K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Anal. Chem. 1984, 56, 111-113.
    [76] D. N. Heiger, Hewlett-Packard Company Publication Number 12-5091-6199E.
    [77] J. P. Quirino, S. Terabe, K. Otsuka, J. B. Vincent, G. Vigh, J. Chromatogr. A 1999, 838, 3-10.
    [78] J. G. Mank, E. S. Yeung, J. Chromatogr. A 1995, 708, 309-321.
    [79] S. V. Rahavendran, H. T. Karnes, Anal. Chem. 1997, 69, 3022-3027.
    [80] D. L. Gallaher Jr., M. E. Johnson, Analyst 1999, 124, 1541-1546.
    [81] A. J. G. Mank, H. Lingeman, C. Gooijer, Trends Anal. Chem. 1996, 15, 1-11.
    [82] B. L. Legndre Jr., D. L. Moberg, D. C. Williams, S. A. Soper, J. Chromatogr. A 1997, 779, 185-194.
    [83] N. Kuroda, R. Nomura, O. Al-Dirbashi, S. Aliyama, K. Nakashima, J. Chromatogr. A 1998, 798, 325-334.
    [84] T. Kaneta, H. Shiba, T. Imasaka, J. Chromatogr. A 1998, 805, 295-300.
    [85] J. E. Melanson, C. A. Boulet, C. A. Lucy, Anal. Chem. 2001, 73, 1809-1813.
    [86] J. E. Melanson, C. A. Lucy, Analyst 2000, 125, 1049-1051.
    [87] S. E. Moring, R. T. Reel, E. J. S. Remco, Anal. Chem. 1993, 65, 3454-3459.
    [88] D. N. Heiger, Hewlett-Packard Company Publication Number 12-5091-6199E.
    [89] J. P. Quirino, S. Terabe, K. Otsuka, J. B. Vincent, G. Vigh, J. Chromatogr. A 1999, 838, 3-10.
    [90] J. P. Quirino, S. Terabe, J. Chromatogr. A 2000, 902, 119-135.
    [91] J. P. Quirino, S. Terabe, J. Chromatogr. A 1999, 850, 339-344.
    [92] J. Palmer, J. P. Landers, Anal. Chem. 2000, 72, 1941-1943.
    [93] F. Foret, V. Sustacek and P. Bocek, J. Microcolumn Sep. 1990, 2, 229-235.
    [94] J. L. Beckers and F. M. Everaerts, J. Chromatogr. 1990, 508, 19-26.
    [95] D. S. Burgi and R. L. Chien, Anal. Chem. 1991, 63, 2042-2047.
    [96] D. S. Burgi and R. L. Chien, Anal. Chem. 1992, 64, 1046-1050.
    [97] D. S. Burgi , Anal. Chem. 1993, 65, 3726-3729.
    [98] Y. He and H. K. Lee, Anal. Chem. 1999, 71, 995-997.
    [99] Z. Liu, P. Sam, S. R. Sirimanne, P. C. McClure, J. Grainger, D. G. Patterson, J. Chromatogr. A 1994, 673, 125-132.
    [100] Nielson, K.R.; Foley, J.P., J. Chromatogr. A 1994, 686, 283-291.
    [101] Quirino, J.P.; Terabe, S., J. Chromatogr. A 1997, 781, 119-128.
    [102] Quirino, J.P.; Terabe, S., Science 1998, 282, 465-468.
    [103] Zhang, C.X.; Thormann, W., Anal. Chem. 1998, 70, 540-548.
    [104] Shihabi, Z.K., J. Chromatogr. A 1998, 817, 25-30.
    [105] Palmer, J.; Munro, N.J.; Landers, J.P., Anal. Chem. 1999, 71, 254-256.
    [106] Quirino, J.P.; Terabe, S., Anal. Chem. 2000, 72, 1023-1030.
    [107] D. S. Burgi, Anal. Chem. 1993, 65, 3726-3729.
    [108] J. P. Quirino, S. Terabe, J. Chromatogr. A 1999, 850, 339-344.
    [109] Z. K. Shihabi, J. Chromatogr. A 1996, 744, 231-240.
    [110] D. Martnez, F. Borrull, M. Calull, J. Chromatogr. A 1997, 788, 185-193.
    [111] R. Kuldvee, M. Kaljurand, Anal. Chem. 1998, 70, 3695-3698.
    [112] Y. He, H.-K. Lee, Anal. Chem. 1999, 71, 995-1001.
    [113] J. Palmer, J. P. Landers, Anal. Chem. 2000, 72, 1941-1943.
    [114] S. Locke, D. Figeys, Anal. Chem. 2000, 72, 2684-2689.
    [115] W.-H. Ding, C.-H. Liu, J. Chromatogr. A 2001, 929, 143-150.
    [116] C.-X. Cao, Y.-Z. He, M. Li, Y.-T. Qian, M.-F. Gao, L.-H. Ge, S.-L. Zhou, L. Yang, Q.-S. Qu, Anal. Chem. 2002, 74, 4167-4174.
    [117] Tai, C.-H., Fang, C., Liu, J.-T., Lin, C. -H., Electrophoresis 2004, 25, 1601-1607.
    [118] J. P. Quirino and S. Terabe, Science 1998, 282, 465-468.
    [119] J. P. Quirino, J.-B. Kim, S. Terabe, J. Chromatogr. A 2002, 965, 357-373.
    [120] Y. Takagai, S. Igarashi, Analyst 2001, 126, 551-552.
    [121] M. R. N. Monton, J. P. Quirino, K. Otsuka, S. Terabe, J. Chromatogr. A 2001, 939, 99-108.
    [122] R. B. Taylor, R. G. Reid, A. S. Low, J. Chromatogr. A 2001, 916, 201-206.
    [123] C. Fang, J.-T. Liu, C.-H. Lin, J. Chromatogr. B 2002, 775, 37-47.
    [124] C. Fang, J.-T. Liu, C.-H. Lin, Talanta 2002, 58, 691-699.
    [125] M. J. Markuszewski, P. Britz-McKibbin, S. Terabe, K. Matsuda, T. Nishioka, J. Chromatogr. A 2003, 989, 293-301.
    [126] C.-H. Wu, M.-C. Chen, A.-K. Su, P.-Y. Shu, S.-H. Chou, C.-H. Lin, J. Chromatogr. B 2003, 785, 317-325.
    [127] M. R. N. Monton, K. Otsuka, S. Terabe, J. Chromatogr. A 2003, 985, 435-445.
    [128] N. Iwanami, Y. Ohtsuka and H. Kubo, Yaoxue Tongbao 1985, 20, 149-153.
    [129] M. Anetai and T. Yamagishi, Hokkaidoritsu Eisei Kenkyushoho 1987, 37, 1193-1196.
    [130] M. Noguchi, K. Hosoda and H. Suzuki, Yakugaku Zasshi 1987, 107, 372-376.
    [131] J. Zhang, Z. Tian and Z. Lou, Planta Med. 1988, 54, 69-70.
    [132] C. Imaz, D. Carrearas, R. Navajas, C. Rodriguez, A. F. Rodriguez, J. Maynar and R. Cortes, J. Chromatogr. 1993, 631, 201-205.
    [133] K. Sagara, K. Suto, Y. Ito, Y. Nagai, H. Suzuki and M. Satake, Iyakuhin Kenkyu 1996, 27, 255-261.
    [134] Y. M. Liu and S. J. Sheu, J. Chromatogr. 1992, 600, 370-372.
    [135] S. M. Masselter and A. J. Zemann, J. Chromatogr. A 1995, 693, 359-365.
    [136] S. M. Masselter and A. J. Zemann, Anal. Chem. 1995, 67, 1047-1053.
    [137] J. Palmer, N. J. Munro and J. P. Landers, Anal. Chem. 1999, 71, 1679-1687.
    [138] 許鴻源、陳玉盤、許順吉、許照信、陳建志、張憲昌,簡明藥材學,新醫藥出版社,台北,1985,p.31.
    [139] 許鴻源,中藥材之研究,新醫藥出版社,台北,1980,p.132.
    [140] 甘偉松,藥用植物學,國立中國醫藥研究所,台北,1979,p.224.
    [141] 顏焜熒,常用中藥之藥理, vol.Ⅱ,國立中國醫藥研究所,台北,1970,p.6.
    [142] 清,寇宗奭,本草衍義,p.79,商務印刷館,北京,1959.
    [143] 徐珞珊、徐國鈞、金蓉鸞、何宏賢,中國藥材學,中國醫藥科技出版社,北京,1994,p.784.
    [144] S. Takagi, J. Pharm. Soc. 1921, 473, 565-573.
    [145] Y. Sugii and H. Shindo, J. Pharm. Soc. 1930, 50, 709-723.
    [146] Y. Sugii, Chem. Abstr. 1930, 24, 3505-3512.
    [147] M. Tomita, Y. Inubushi and M. Yamagata, J. Pharm. Soc. 1951, 71, 1069-1071.
    [148] M. Tomita and T. Nakano, Ber. 1952, 72, 197-201
    [149] M. Tomita and T. Nakano, Ber. 1952, 72, 1256-1262
    [150] T. Nakano, Pharm. Bull. 1954, 2, 329-331.
    [151] T. Nakano, Chem. Pharm. Bull. 1956, 4, 408-412.
    [152] M. Tomita and M. Kozuka, Yakugaku Zasshi 1967, 87, 1134-1137.
    [153] M. Fujita, H. Itokawa and Y. Sashida, Yakugaku Zasshi 1973, 93, 429-434.
    [154] 葛發歡,中藥材,1990, 13, 45.
    [155] J. P. Quirino and S. Terabe, Anal. Chem. 2000, 72, 1023-1030.
    [156] Brandt, E. S.; Cotton, T. M. Surface-Enhanced Raman Scattering, 2nd ed.; Rossiter, B. W., Baetzold, R. C., Eds.; John Wiley & Sons: New York, 1993; Vol. Ixb, pp 633-718Shihabi, Z. K., J. Chromatogr. A 2000, 902, 107-117.
    [157] Campion, A.; Kambhampati, P. Chem. Soc. Rev. 1998, 27, 241-250.
    [158] Chang, R. K.; Furtak, T. E. Surface Enhanced Raman Scattering; Plenum Press: New York, 1982.
    [159] He, L., Natan, M. J., Keating, C. D., Anal. Chem. 2000, 72, 5348-5355.
    [160] Dijkstra, R. J., Gerssen, A., Efremov, E. V., Ariese, F., Brinkman, U. A. T., Gooijer, C., Anal. Chim. Acta. 2004, 508, 127-134.
    [161] Seifar, R. M., Dijkstra, R. J., Gerssen, A., Ariese, F., Brinkman, U. A. T., Gooijer, C., J. Sep. Sci. 2002, 25, 814-818.
    [162] Nirode, W. F., Devault, G. L., Sepaniak, M. J., Anal. Chem. 2000, 72, 1866-1871.
    [163] F. Lorraine, O. Darren A., S. W. Franklin, Anal. Chim. Acta. 1997, 349, 221-229.

    QR CODE