研究生: |
劉亦宸 Liu, I-Chen |
---|---|
論文名稱: |
颱風數目年代際變化生成指數發展 Development of A GPI Index for Tropical Cyclone Interdecadal Variability by CMIP6 HighResMIP Models |
指導教授: |
鄒治華
Tsou, Chih-Hua |
口試委員: |
陳正達
Chen, Cheng-Ta 洪志誠 Hong, Chi-Cherng 鄒治華 Tsou, Chih-Hua |
口試日期: | 2022/07/27 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 西北太平洋 、年代際變化 、颱風潛在生成指數 、CMIP6 模式 |
DOI URL: | http://doi.org/10.6345/NTNU202300533 |
論文種類: | 學術論文 |
相關次數: | 點閱:151 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
西北太平洋(WNP)颱風生成數(NTC)具有年代際變化的現象,而颱風的生成會受大尺度環境場的影響,前人依此關係發展出颱風生成指數(GPI),但無法掌握到NTC年代際變化現象。因此本研究以Murakami and Wang(2010)的 GPI 及Wang and Murakami(2020)DGPI 指數中的環境參數為基礎,利用高解析度CMIP6 HighResMIP 資料與主成分迴歸分析(PCR),發展出能掌握在 WNP 區 NTC 年代際變化的 GPI 。
本研究發現,夏季時多數模式能模擬到 NTC 年代際變化的現象,但在 TC 突變的模擬上和觀測結果並不一致。秋季時,海氣耦合模式的年代際變化、突變模擬上比大氣模式好。模式中以 HadGEM3-GC31-HM 的海氣模式結果與觀測最接近。在兩時期 TC 生成的空間分布差異上,大氣模式的分布和觀測不符甚至相反,而海氣模式在TC多的位置與觀測相符,不過對活躍期數量較少的西北區域較無法掌握。在相關性分析結果上,海氣模式的結果也比大氣模式接近觀測值,且呈現正相關,大氣模式則為負相關。
藉由探討 NTC 變化與大尺度環境變化的關係,我們發現在活躍期,有利於 TC 生成的大尺度環境分布情況,會與自身 TC 生成較多的區域相對應。兩時期生成指數差異的結果顯示,觀測上 Murakami and Wang(2010)的 GPI 總值變化與實際的 NTC 變化相反,未能掌握非活躍期 NTC 大幅減少的特徵。
本研究發展的新 GPI 指數(NGPI),雖然選取的環境參數與原有的 GPI 接近,但大多數以年代際變化明顯的 PC2 、 PC3 居多,尤其是在夏季。 NGPI 與原 GPI 最大的不同是,夏天 NGPI 沒有絕對或相對渦度項,在動力因素上,只採用ω項、垂直風切項;在熱力因素上,只採用相對濕度 PC2 、 PC3 。秋天的 NGPI ,在動力因素上,則選用相對渦度項和垂直風切項,在熱力因素上,只採用相對濕度 PC1 。因此,在建立年代際變化新的 GPI 時,考慮不同季節選用不同的環境參數,對於不同季節 NTC 年代際變化的掌握會更好。
Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Monthly weather review, 125, 2662-2682.
——, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. Journal of Geophysical Research: Atmospheres, 107, ACL 26-21-ACL 26-15.
Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. Journal of Climate, 26, 9880-9902.
Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. Journal of Climate, 20, 4819-4834.
Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. Journal of the Atmospheric Sciences, 66, 3061-3074.
Camargo, S. J., M. K. Tippett, A. H. Sobel, G. A. Vecchi, and M. Zhao, 2014: Testing the performance of tropical cyclone genesis indices in future climates using the HiRAM model. Journal of Climate, 27, 9171-9196.
Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteorology and Atmospheric Physics, 89, 143-152.
Chen, T.-C., S.-Y. Wang, and M.-C. Yen, 2006: Interannual variation of the tropical cyclone activity over the western North Pacific. Journal of Climate, 19, 5709-5720.
Chia, H. H., and C. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. Journal of Climate, 15, 2934-2944.
Chien, F.-C., and H.-C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). Journal of Geophysical Research: Atmospheres, 116.
Choi, Y., K.-J. Ha, and F.-F. Jin, 2019: Seasonality and El Niño diversity in the relationship between ENSO and western North Pacific tropical cyclone activity. Journal of Climate, 32, 8021-8045.
Choi, Y., K.-J. Ha, C.-H. Ho, and C. E. Chung, 2015: Interdecadal change in typhoon genesis condition over the western North Pacific. Climate Dynamics, 45, 3243-3255.
Emanuel, K., 2010: Tropical Cyclone Activity Downscaled from NOAA-CIRES Reanalysis, 1908–1958. Journal of Advances in Modeling Earth Systems, 2.
Emanuel, K., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th conference on hurricanes and tropical meteorolgy.
Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and Global Warming: Results from Downscaling IPCC AR4 Simulations. Bulletin of the American Meteorological Society, 89, 347-368.
Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. Journal of Atmospheric Sciences, 52, 3969-3976.
Garner, S., 2015: The relationship between hurricane potential intensity and CAPE. Journal of the Atmospheric Sciences, 72, 141-163.
Ge, X., T. Li, S. Zhang, and M. Peng, 2010: What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmospheric Science Letters, 11, 46-50.
Gray, W. M., 1968: GLOBAL VIEW OF THE ORIGIN OF TROPICAL DISTURBANCES AND STORMS. Monthly Weather Review, 96, 669-700.
Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, 155-218.
Haarsma, R. J., and Coauthors, 2016: High resolution model intercomparison project (HighResMIP v1. 0) for CMIP6. Geoscientific Model Development, 9, 4185-4208.
Holland, G., 1995: Scale interaction in the western Pacific monsoon. Meteorology and Atmospheric Physics, 56, 57-79.
Hong, C.-C., C.-H. Tsou, M.-Y. Lee, C.-C. Chang, H.-H. Hsu, and K.-C. Chen, 2018: Effect of ISO-SSE Interaction on Accelerating the TS to Severe TS Development in the WNP Since the Late 1990s. Geophysical Research Letters, 45, 12,008-012,014.
Hsiao, L. P., C. H. Tsou, and J. Y. Yu, 2020: Investigating the abrupt change of tropical cyclone (TC) activity in the Western North Pacific by using different TC genesis indices. International Journal of Climatology, 40, 5959-5972.
Hsu, P.-C., P.-S. Chu, H. Murakami, and X. Zhao, 2014: An abrupt decrease in the late-season typhoon activity over the western North Pacific. Journal of Climate, 27, 4296-4312.
Hsu, P.-C., T.-H. Lee, C.-H. Tsou, P.-S. Chu, Y. Qian, and M. Bi, 2017: Role of scale interactions in the abrupt change of tropical cyclone in autumn over the western North Pacific. Climate Dynamics, 49, 3175-3192.
Huangfu, J., R. Huang, W. Chen, T. Feng, and L. Wu, 2017: Interdecadal variation of tropical cyclone genesis and its relationship to the monsoon trough over the western North Pacific. International Journal of Climatology, 37, 3587-3596.
Knutson, T., C. Landsea, and K. Emanuel, 2010: Tropical cyclones and climate change: A review. Global perspectives on tropical cyclones: from science to mitigation, 243-284.
Lee, C.-S., C.-C. Wu, T.-C. C. Wang, and R. L. Elsberry, 2011: Advances in understanding the “Perfect Monsoon-influenced Typhoon”: Summary from International Conference on Typhoon Morakot (2009). Asia-Pacific Journal of Atmospheric Sciences, 47, 213-222.
Li, Z., W. Yu, T. Li, V. Murty, and F. Tangang, 2013: Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle. Journal of Climate, 26, 1033-1046.
Liu, C., W. Zhang, X. Geng, M. F. Stuecker, and F.-F. Jin, 2019: Modulation of tropical cyclones in the southeastern part of western North Pacific by tropical Pacific decadal variability. Climate Dynamics, 53, 4475-4488.
Liu, K. S., and J. C. L. Chan, 2013: Inactive Period of Western North Pacific Tropical Cyclone Activity in 1998–2011. Journal of Climate, 26, 2614-2630.
Matsuura, T., M. Yumoto, and S. Iizuka, 2003: A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dynamics, 21, 105-117.
McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. Journal of the Atmospheric Sciences, 38, 1132-1151.
Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. Journal of Climate, 23, 2699-2721.
O'Neill, B. C., and Coauthors, 2016: The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461-3482.
Paterson, L. A., B. N. Hanstrum, N. E. Davidson, and H. C. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Monthly Weather Review, 133, 3644-3660.
Rayner, N., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108.
Rayner, N. A., Kennedy, J. J., Smith, R. O., and Titchner, H. A., 2016: The Met Office Hadley Centre Sea Ice and Sea Surface Temperature data set, version 2, part 3: the combined analysis. in preparation.
Roberts, M. J., and Coauthors, 2020: Impact of model resolution on tropical cyclone simulation using the HighResMIP–PRIMAVERA multimodel ensemble. Journal of Climate, 33, 2557-2583.
Rodionov, S. N., 2004: A sequential algorithm for testing climate regime shifts. Geophysical Research Letters, 31.
Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91, 1015-1058.
Tsou, C.-H., H.-H. Hsu, and P.-C. Hsu, 2014: The role of multiscale interaction in synoptic-scale eddy kinetic energy over the western North Pacific in autumn. Journal of climate, 27, 3750-3766.
Wang, B., and J. C. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. Journal of climate, 15, 1643-1658.
Wang, B., and H. Murakami, 2020: Dynamic genesis potential index for diagnosing present-day and future global tropical cyclone genesis. Environmental Research Letters, 15, 114008.
Wu, L., R. Wang, and X. Feng, 2018: Dominant role of the ocean mixed layer depth in the increased proportion of intense typhoons during 1980–2015. Earth's Future, 6, 1518-1527.
Yu, J.-Y., L.-P. Hsiao, and P.-G. Chiu, 2018: Evaluating the Emanuel-Nolan genesis potential index: Contrast between North Atlantic and western North Pacific. Terrestrial, Atmospheric & Oceanic Sciences, 29.
Yumoto, M., and T. Matsuura, 2001: Interdecadal Variability of Tropical Cyclone Activity in the Western North Pacific. Journal of The Meteorological Society of Japan - J METEOROL SOC JPN, 79, 23-35.
Yumoto, M., T. Matsuura, and S. Iizuka, 2003: Interdecadal variability of tropical cyclone frequency over the western North Pacific in a high-resolution atmosphere-ocean coupled GCM. Journal of the Meteorological Society of Japan. Ser. II, 81, 1069-1086.
蕭立朋, and 余嘉裕, 2017: 適合西北太平洋海域之颱風生成潛在指數. 大氣科學, 45, 221-238.