研究生: |
劉亞汶 Liou, Yea-Wenn |
---|---|
論文名稱: |
中空纖維液相微萃取技術結合纖維/電噴灑質譜法之開發與應用 The development and applications of an on-line microextraction method based on fiber-spray mass spectrometry |
指導教授: |
林震煌
Lin, Cheng-Huang |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 纖維/電噴灑質譜法 、中空纖維液相微萃取 、嘉磷塞 |
英文關鍵詞: | fiber-spray/mass spectrometry, hollow fiber liquid phase microextraction, glyphosate |
DOI URL: | http://doi.org/10.6345/DIS.NTNU.DC.003.2019.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:192 下載:12 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發了使用多孔中空纖維液相微萃取技術 (Hollow fiber liquid phase microextraction,簡稱HF-LPME)結合纖維電噴灑質譜法 (fiber-spray/mass spectrometry)的檢測技術。由3D列印製作一個纖維容槽,用於連接中空纖維和電噴灑針。平口纖維前端於電噴灑時亦可形成泰勒錐,其中產生的離子可透過質譜儀進行檢測。本研究設計和測試的微萃取槽由離心管(用於樣品溶液儲存)和一枚多孔中空纖維(用於樣品萃取)所構成。當萃取槽的纖維被放置於質譜入口和電噴灑針間時,從樣品溶液中被萃取出來分析物,因蒸發而隨溶劑從纖維表面逸出。當蒸發出來的分析物與電噴灑輔助溶劑的帶電粒子接觸時,分析物將被游離而能透過質譜儀進行檢測。使用此裝置,以濫用藥物3,4-亞甲二氧基甲基苯丙胺 (MDMA)為分析物時,透過中空纖維液相微萃取可將偵測極限提高約360倍,此方法對MDMA的偵測極限為2 ng/mL。此方法除可應用於濫用藥物的檢測外,亦可應用於農藥殘留的檢驗,本研究使用非侵入性方法採樣,以沾水的毛筆在青椒表面來回塗抹10次,收集殘留於青椒表面的嘉磷塞 (glyphosate),再將採樣後的毛筆放入已完成萃取準備的微萃取槽中,讓筆毛上的嘉磷塞脫附並溶解於微萃取槽的0.1 M氫氧化鈉溶液中進行萃取,最終以纖維電噴灑質譜法進行檢測。使用此方法,嘉磷塞的偵測極限為1 ng/cm2,與青椒樣品均質化再添加嘉磷塞後所測得的偵測極限相同。在樣品均質化的黃豆基質中檢測嘉磷塞,透過線上微萃取技術則可將偵測極限提升1000倍。
關鍵字:纖維/電噴灑質譜法,中空纖維液相微萃取,嘉磷塞
A novel fiber-spray/mass spectrometry method using a piece of a porous hollow fiber is described. An adapter, fabricated by a 3D-printer, was designed to connect the fiber and a standard ESI (electro-spray ionization) needle, in which a Taylor cone was formed and the resulting ions were detected by a mass spectrometer. Since a porous hollow fiber is usually used for microextraction, the so-called hollow fiber liquid-phase microextraction (HF-LPME) method, a new methodology that involves coupling HF-LPME and fiber-spray, was developed for the first time. We reported herein on the design and testing of a microextraction kit. The kit consists of a centrifuge tube (reservoir for the sample solution) and a piece of a porous hollow fiber (for sample extraction). The kit was placed between the mass inlet and the ESI needle. Using the kit, analytes can be extracted from a very dilute solution and then evaporate and escape from the fiber surface. When they make contact with the ESI plume, which arises from the ESI needle tip, the molecules are ionized and then detected by a mass spectrometer. Using the setup, it was possible to improve the limit of detection after microextraction by ∼360-fold when MDMA (3,4-methylenedioxymethamphetamine) was analyzed, and the limit of detection of 2 ng/mL was achieved. We also reported on a novel on-line microextraction technique, in which a watercolor pen was used for sample collection and a section of porous-polypropylene hollow fiber was used for sample concentration by means of liquid-liquid microextraction. In order to achieve this, a kit was well designed and tested. The kit consists of a watercolor pen, a section of porous-polypropylene hollow fiber and a centrifuge tube. It can be placed between the mass inlet and the ESI needle. Using this configuration, glyphosate, collected from a green pepper surface, can be extracted from a very dilute solution and then evaporates and escapes from the fiber surface. When glyphosate molecules make contact with the ESI plume, which arises from the ESI needle tip, they were ionized and then detected by a mass spectrometer. Using the setup, it was possible to improve the limit of detection for glyphosate after microextraction by ~1000-fold, resulting in a limit of detection of 1 ng/cm2.
key words: fiber spray/mass spectrometry, hollow fiber liquid phase microextraction, glyphosate
[1] D. N. Correa, J. M. Santos, L. S. Eberlin, M. N. Eberlin, S. F. Teunissen, Forensic Chemistry and Ambient mass spectrometry: A perfect couple destined for a happy marriage? Anal. Chem. 88 (2016) 2515-2526.
[2] Z. Tak’ts, J. M. Wiseman, B. Gologan, R. G. Cooks, Mass spectrometry sampling under ambient conditions with desorption electrospray ionization, Science 306 (2004) 471-473.
[3] R. B. Cody, J. A. Larame´e, H. D. Durst, Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions, Anal. Chem. 77 (2005) 2297-2302.
[4] E. T. Jansson, M. T. Dulay, R. N. Zare, Monitoring enzymatic reactions in real time using Venturi easy ambient sonic-spray ionization mass spectrometry, Anal. Chem. 88 (2016) 6195-6198.
[5] R. Haddad, R. Sparrapan, T. Kotiaho, M. N. Eberlin, Easy ambient sonic-spray ionization-membrane interface mass spectrometry for direct analysis of solution constituents, Anal. Chem. 80 (2008) 898-903.
[6] C. Y. Cheng, C. H. Yuan, S. C. Cheng, M. Z. Huang, H. C. Chang, T. L. Cheng, C. S. Yeh, J. Shiea, Electrospray-Assisted Laser Desorption/Ionization Mass Spectrometry for Continuously Monitoring the States of Ongoing Chemical Reactions in Organic or Aqueous Solution under Ambient Conditions, Anal. Chem. 80 (2008) 7699-7705.
[7] X. C. Lin, X. N. Wang, L. Liu, Q. Wen, R. Q. Yu, J. H. Jiang, Surface enhanced laser desorption ionization of phospholipids on gold nanoparticles for mass spectrometric immunoassay, Anal. Chem. 88 (2016) 9881-9884.
[8] S. Y. Lin, M. Z. Huang, H. C. Chang, J. Shiea, Using electrospray-assisted laser desorption/ionization mass spectrometry to characterize organic compounds separated on thin-layer chromatography plates, Anal. Chem. 79 (2007) 8789-8795.
[9] J. Liu, H. Wang, N. E. Manicke, J. M. Lin, R. G. Cooks, Z. Ouyang, Development, characterization, and application of paper spray ionization, Anal. Chem. 82 (2010) 2463-2471.
[10] A. Li, P. Wei, H.C. Hsu, R. G. Cooks, Direct analysis of 4-methylimidazole in foods using paper spray mass spectrometry, Analyst. 138 (2013) 4624-4630.
[11] B. Hu, P. K. So, Z. P. Yao, Electrospray ionization with aluminum foil: A versatile mass spectrometric technique, Anal. Chim. Acta. 817 (2014) 1-8.
[12] B. Hu, Z. P. Yao, Mobility of proteins in porous substrates under electrospray ionization conditions, Anal. Chem. 88 (2016) 5585-5589.
[13] D. E. Damon, K. M. Davis, C. R. Moreira, P. Capone, R. Cruttenden, A. K. Badu-Tawiah, Direct biofluid analysis using hydrophobic paper spray mass spectrometry. Anal. Chem. 88 (2016) 1878-1884.
[14] W. C. Liao, H. K. Chen, T. Y. Kuo, C. H. Lin, Paper spray-MS for bioanalysis. Bioanalysis. 6 (2014) 1-10.
[15] W. Liu, N. Wang, X. Lin, Y. Ma, and J. M. Lin, Interfacing microsampling droplets and mass spectrometry by paper spray ionization for online chemical monitoring of cell, Anal. Chem. 86 (2014) 7128-7134.
[16] A. M. Hamid, A. K. Jarmusch, V. Pirro, D. H. Pincus, B. G. Clay, G. Gervasi, R. G. Cooks, Rapid discrimination of bacteria by paper spray mass spectrometry, Anal. Chem. 86 (2014) 7500-7507.
[17] P. H. Lai, P. C. Chen, Y. W. Liao, J. T. Liu, C. C. Chen, C. H. Lin, Comparison of gampi paper and nanofibers to chromatography paper used in paper spray-mass spectrometry, J. Mass. Spectrom. 375 (2015) 14-17.
[18] C. S. Jhang, H. Lee, Y. S. He, J. T. Liu, C. H. Lin, Rapid screening and determination of 4-chloroamphetamine in saliva by paper spray-mass spectrometry and capillary electrophoresis-mass spectrometry, Electrophoresis. 33 (2012) 1-6.
[19] H. Lee, C. S. Jhang, J. T. Liu, C. H. Lin, Rapid screening and determination of designer drugs in saliva by a nib-assisted paper spray-mass spectrometry and separation technique, J. Sep. Sci. 0 (2012) 1-4.
[20] A. Schedl, P. Korntner, T. Zweckmair, U. Henniges, T. Rosenau, A. Potthast, Detection of cellulose-derived chromophores by ambient ionization-MS, Anal. Chem. 88 (2016) 1253-1258.
[21] G. IJ. Salentijn, H. P. Permentier, E. Verpoorte. 3D-Printed paper spray ionization cartridge with fast wetting and continuous solvent supply features, Anal. Chem. 86 (2014) 11657-11665.
[22] M. Li, J. Zhang, J. Jiang, J. Zhang, J. Gao, X. Qiao, Rapid, in situ detection of cocaine residues based on paper spray ionization coupled with ion mobility spectrometry, Analyst. 139 (2014) 1687-1691.
[23] D. T. Snyder, C. J. Pulliam, Z. Ouyang, R. G. Cooks, Miniature and fieldable mass spectrometers: Recent advances, Anal. Chem. 88 (2016) 2-29.
[24] G. A. Harris, A. S. Galhena, F. M. Fernández, Ambient sampling/ionization mass spectrometry: Applications and current trends, Anal. Chem. 83 (2011) 4508-4538.
[25] M. Z. Huang, C. H. Yuan, S. C. Cheng, Y.T. Cho, J. Shiea, Ambient ionization mass spectrometry, Annu. Rev. Anal. Chem. 3 (2010) 43-65.
[26] H. K. Chen, C. H. Lin, J. T. Liu, C. H. Lin. Electrospray ionization using a bamboo pen nib, J. Mass. Spectrom. 356 (2013) 37-40.
[27] M. Tascon1, G. A. Gómez-Ríos1, N. Reyes-Garcés, J. Poole, E. Boyacı, J. Pawliszyn, Ultra-fast quantitation of voriconazole in human plasma by coated blade spray mass spectrometry, J. Pharm. Biomed. Anal. 144 (2017) 106-111
[28] G. A. Gómez-Ríos, C. Liu, M. Tascon, N. Reyes-Garcés, D. W. Arnold, T. R. Covey, and J. Pawliszyn, Open port probe sampling interface for the direct coupling of biocompatible solid-phase microextraction to atmospheric pressure ionization mass spectrometry, Anal. Chem. 89 (2017) 3805-3809.
[29] V. Pirro, A. K. Jarmusch, M.Vincenti, R. Graham Cooks, Direct drug analysis from oral fluid using medical swab touch spray mass spectrometry, Analytica Chimica Acta 861 (2015) 47-54.
[30] A. K. Jarmusch, V. Pirro, K. S. Kerian, and Graham Cooks, Detection of strep throat causing bacterium directly from medical swabs by touch spray-mass spectrometry, Analyst. 139 (2014) 4785-4789.
[31] E. P. Dutkiewicz, H. Y. Chiu, P. L. Urban, Probing skin for metabolites and topical drugs with hydrogel micropatches, Anal. Chem. 89 (2017) 2664-2670.
[32] E. P. Dutkiewicz, Hsien-Yi Chiu P. L. Urban, Micropatch-arrayed pads for non-invasive spatial and temporal profiling of topical drugs on skin surface, J. Mass Spectrom. 50 (2015) 1321-1325.
[33] S. C. Cheng, C. H. Wang, J. Shiea, Formation of metal-adducted analyte ions by flame-induced atmospheric pressure chemical ionization mass spectrometry, Anal. Chem. 88 (2016) 5159-5165.
[34] S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid-liquid extraction, J. Chromatogr. A 1184 (2008) 132-142.
[35] T. S. Ho, S. Pedersen-Bjergaard, K. E. Rasmussen, Recovery, enrichment and selectivity in liquid-phase microextraction Comparison with conventional liquid-liquid extraction, J. Chromatogr. A 963(2002) 3-17.
[36] S. Pedersen-Bjergaard, K. E. Rasmussen, Bioanalysis of drugs by liquid-phase microextraction coupled to separation techniques, J. Chromatogr. B 817 (2005) 3-12.
[37] H. G. Ugland, M. Krough, K. E. Rasmussen, Liquid-phase microextraction as a sample preparation technique prior to capillary gas chromatographic-determination of benzodiazepines in biological matrices, J. Chromatogr. B 749 (2000) 85-92.
[38] T. G. Halvorsen, S. Pedersen-Bjergaard, J. Leon E. Reubsaet, K. E. Rasmussen, Liquid-phase microextraction combined with liquid chromatography-mass spectrometry. Extraction from small volumes of biological samples, J. Sep. Sci. 26 (2003) 1520-1526.
[39] T. G. Halvorsen, S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-phase microextraction and capillary electrophoresis of citalopram, an antidepressant drug, J. Chromatogr. A 909 (2001) 87-93.
[40] S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis, Anal. Chem. 71 (1999) 2650-2656.
[41] A. Gjelstad, S. Pedersen-Bjergaard, Perspective: Hollow fiber liquid-phase microextraction-principles, performance, applicability, and future directions, Scientia Chromatographica 5 (2013) 181-189.
[42] Y. Jiang, C. S. Lee, On-line coupling of hollow fiber membranes with electrospray ionization mass spectrometry for continuous affinity selection, concentration and identification of small-molecule libraries, J. Mass Spectrom. (2001) 664-669.
[43] C. Wang, S. Hu, X. Chen, X. Bai, Screening and quantification of anticancer compounds in traditional Chinese medicine by hollow fiber cell fishing and hollow fiber liquid/solid-phase microextraction, J. Sep. Sci. 39 (2016) 1814-1824.
[44] J. Xiong, J. Chen, M. He, B. Hu, Simultaneous quantification of amphetamines, caffeine and ketamine in urine by hollow fiber liquid phase microextraction combined with gas chromatography-flame ionization detector, Talanta 82 (2010) 969-975.
[45] S. Napoletano, C. Montesano, D. Compagnone, R. Curini, G. D’ascenzo, C. Roccia, M. Sergi, Determination of Illicit Drugs in Urine and Plasma by Micro-SPE Followed by HPLC-MS/MS, Chromatographia 75 (2012) 55-63.
[46] T. G. Halvorsen, S. Pedersen-Bjergaard, J. Leon E. Reubsaet, K. E Rasmussen, Liquid-phase microextraction combined with flow-injection tandem mass spectrometry Rapid screening of amphetamines from biological matrices, J. Sep. Sci. 24 (2001) 615-622.
[47] L. Meng, W. Zhang, P. Meng, B. Zhu, K. Zheng, Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography–mass spectrometry, J. Chromatogr. B 989 (2015) 46-53.
[48] Andre Valle de Bairros, L. Rafael, Rafael Menck de Almeida, Y. Mauricio, Determination of ketamine, norketamine and dehydronorketamine in urine by hollow-fiber liquid-phase microextraction using an essential oil as supported liquid membrane, Forensic Science International 243 (2014) 47-54.
[49] Z. Es’haghi, Determination of widely used non-steroidal anti-inflammatory drugs in water samples by in situ derivatization, continuous hollow fiber liquid-phase microextraction and gas chromatography-flame ionization detector, Analytica Chimica Acta 641 (2009) 83-88.
[50] D. A. Lambropoulou, T. A. Albanis, Liquid-phase micro-extraction techniques in pesticide residue analysis, J. Biochem. Biophys. Methods 70 (2007) 195-228.
[51] J. Cai, G. Chen, J. Qiu, R. Jiang, F. Zeng, F. Zhu, G. Ouyang, Hollow fiber based liquid phase microextraction for the determination of organochlorine pesticides in ecological textiles by gas chromatography-mass spectrometry, Talanta 146 (2016) 375-380.
[52] L. Hou, G. Shen, H. K. Lee, Automated hollow fiber-protected dynamic liquid-phase microextraction of pesticides for gas chromatography-massspectrometric analysis, J. Chromatogr A 985 (2003) 107-116.
[53] R. Romero-Gonza´ lez, E. Pastor-Montoro, J. Martı´53nez-Vidal, A. Garrido-Frenich, Application of hollow fiber supported liquid membrane extraction to the simultaneous determination of pesticide residues in vegetables by liquid chromatography/mass spectrometry Antonia, Rapid Commun. Mass Spectrom. 20 (2006) 2701-2708.
[54] E. Y. Hsiao, S. W. McBride, S. Hsien, G. Sharon, E. R. Hyde, T. McCue, J. A. Codelli, J. Chow, S. E. Reisman, J. F. Petrosino, P. H. Patterson, S. K. Mazmanian, The microbiota modulates gut physiology and behavioral abnormalities associated with autism, Cell 155 (2013) 1451-1463.
[55] D. Cattani, V. L. de L. O. Cavalli, C. E. H. Rieg, J. T. Domingues, T. Dal-Cim, C. I. Tasca, F. R. M. B. Silva, A. Zamoner, Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity, Toxicology 320 (2014) 34-45
[56] T. R. Sampson, J. W. Debelius, T. Thron, S. Janssen, G. G. Shastri, Z. E. Ilhan, C. Challis, C. E. Schretter, S. Rocha, V. Gradinaru, M. F. Chesselet, A. Keshavarzian, K. M. Shannon, R. Krajmalnik-Brown, P. Wittung-Stafshede, R. Knight, S. K. Mazmanian, Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease, Cell 167 (2016) 1469–1480.
[57] E. R. Barbosa, M. D. Leiros da Costa, L. A. Bacheschi, M. Schff, C. C. Leite, Parkinsonism after glycin-derivate exposure, Mov. Disord. 16 (2001) 565-568.
[58] A. Moretto, C. Colosio, Biochemical and toxicological evidence of neurological effects of pesticides: The example of Parkinson’s disease, NeuroToxicology 32 (2011) 383-391.
[59] D. Yan, Y. Zhang, L. Liu, H. Yan, Pesticide exposure and risk of Alzheimer’s disease: a systematic review and meta-analysis, Scientific Reports 6 (2016) 32222.
[60] G. E. Seralini, E. Clair, R. Mesnage, S. Gress, N. Defarge, M. Malatesta, D. Hennequin, J. S. de Vendomois, Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize, Food and Chemical Toxicology 50 (2012) 4221-4231.
[61] G. E. Seralini, E. Clair, R. Mesnage, S. Gress, N. Defarge, M. Malatesta, D. Hennequin, J. S. de Vendomois, Retraction notice to “Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize” [Food Chem. Toxicol. 50(2012) 4221-4231], Food and Chemical Toxicology 63 (2014) 244.
[62] S. Thongprakaisang, A. Thiantanawat, N. Rangkadilok, T. Suriyo, J. Satayavivad, Glyphosate induces human breast cancer cells growth via estrogen receptors, Food and Chemical Toxicology 59 (2013) 129-136.
[63] E. Borjesson, L. Torstensson, New methods for determination of glyphosate and (aminomethyl)phosphonic acid in water and soil, J. Chromatogr. A 886 (2000) 207-216.
[64] M. Motojyuku, T. Saito, K. Akieda, H. Otsuka, I. Yamamoto, S. Inokuchi, Determination of glyphosate, glyphosate metabolites, and glufosinatein human serum by gas chromatography-mass spectrometry, J. Chromatogr. B 875(2008) 509-514.
[65] T. Saito, N. Miura, A. Namera, H. Oikawa, S. Miyazaki, A. Nakamoto, S. Inokuchi, Mixed-mode C–C18 monolithic spin-column extraction and GC–MS for simultaneous assay of organophosphorus compounds, glyphosate, and glufosinate in human serum and urine, Forensic Toxicol. 30 (2012)1–10.
[66] M. X. Chen, Z. Y. Cao, Y. Jiang, Z. W. Zhu, Direct determination of glyphosate and its major metabolite, aminomethylphosphonic acid, in fruits and vegetables by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography coupled with electrospray tandem mass spectrometry, J. Chromatogr. A 1272 (2013) 90-99.
[67] H. A. Martins-Junior, D. T. Lebre, A. Y. Wang, M. A. F. Pires, O. V. Bustillos, Residue analysis of glyphosate and aminomethylphosphonic acid (AMPA) in soybean using liquid chromatography coupled with tandem mass spectrometry, Soybean-Biochemistry, Chemistry and Physiology 27 (2016) 495-506.
[68] G. L. G. C. Gomes, C. A. Carbonari, E. D. Velini, M. L. B. Trindade, J. R. M. Silva, Extraction and simultaneous determination of glyphosate, AMPA and compounds of the shikimic acid path way in plants, Planta Daninha, Viçosa-MG 33 (2015) 295-304.
[69] M. Piriyapittaya, S. Jayanta, S. Mitra, N. Leepipatpiboon, Micro-scale membrane extraction of glyphosate and aminomethylphosphonic acid in water followed by high-performance liquid chromatography and post-column derivatization with fluorescence detector, J. Chromatogr. A 1189 (2008) 483-492.
[70] C. Rios, V. Salvadó, M. Hidalgo, Facilitated transport and preconcentration of the herbicide glyphosate and its metabolite AMPA through a solid supported liquid-membrane, J. Membrane Sci. 203 (2002) 201-208.
[71] M. Ibanez, O. J. Pozo, J. V. Sancho, F. J. Lopez, F. Hernandez, Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry, J. Chromatogr. A 1081 (2005) 145-155.
[72] J. Y. Liu, P. C. Chen, Y. W. Liou, K. Y. Chang, C. H. Lin, Development and application of a brush-spray derived from a calligraphy-brush-style synthetic hair pen for use in ESI/MS, J. Mass. Spectrom. 6 (2017) S0058.
[73] Y. W. Liou, K. Y. Chang, C. H. Lin, Sampling and profiling caffeine and its metabolites from an eyelid using a watercolor pen based on electrospray ionization/mass spectrometry, Int. J. Mass Spectrom. 422 (2017) 51–55.
[74] Y. W. Liou, J. S. Wang, C. C. Chen, C. H. Lin, Development of an on-line microextraction method for use in fiber-spray/mass spectrometry, Int. J. Mass Spectrom. 421 (2017) 178–183.