研究生: |
周德宇 Chou, Te-Yu |
---|---|
論文名稱: |
利用金銅雙金屬奈米材料催化二氧化碳之電化學還原反應 The Development of Gold-Copper Bimetallic Nanocatalyst for Carbon Dioxide Reduction Reaction |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 二氧化碳還原反應 、水熱法 、金銅雙金屬奈米材料 |
英文關鍵詞: | carbon dioxide reduction reaction, Hydrothermal, gold-copper bimetallic nanomaterial |
DOI URL: | https://doi.org/10.6345/NTNU202204351 |
論文種類: | 學術論文 |
相關次數: | 點閱:306 下載:21 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於溫室效應以及能源危機等議題對於人類的生活影響範圍越來越大 ,對於著手開發新興再生能源的研究也越來越多 ,研究範圍也越來越廣。其中對於開發二氧化碳為可再生能源的研究也日益增加 ,因此研究相關材料基板能有效催化二氧化碳還原反應並且提高效率被視為此研究領域重要的目的。
而本研究則以利用金銅雙金屬奈米材料作為實驗基板 ,用以催化在電解反應中的二氧化碳順利還原成一氧化碳並計算其法拉第效率。從原本測試利用水熱法所合成的含銅奈米顆粒基板 ,其一氧化碳的法拉第效率約為1.1% ,然而不斷改進方法使用含金離子之溶液直接滴入含銅奈米顆粒基板基板的表面上並進行鍛燒 ,使整體反應能不受介面活性劑的影響直接在基板的表面上作用,並量測得到一氧化碳的法拉第效率得到約為28.8%。
關鍵字:二氧化碳還原反應;水熱法;金銅雙金屬奈米材料
In recent years, due to the profound influences of Greenhouse and energy crisis, more researches of discovering renewable energy are increasing and become extensive. Among them developing carbon dioxide reduction reaction is the most crucial part. As a result, making the research into substrates, which catalyze of carbon dioxide reduction reaction and promote the efficiency, is regarded as main purpose.
This research uses gold-copper bimetallic nanomaterial as a working substrate, in order to catalyze the electrochemical reaction of carbon dioxide reduction and calculate the Faradic efficiency of carbon monoxide. In the beginning, by using Hydrothermal to synthesize the copper nanoparticles on substrate and test the Faradic efficiency of the sample, the result is only around 1.1%. However, by dropping the Au ion solution on the surface of copper nanoparticles substrate with annealing step to promote Faradic efficiency of the sample without any effects from surfactant. Amazingly Faradic efficiency arises to 28.8%.
Keywords: carbon dioxide reduction reaction ; Hydrothermal ; gold-copper bimetallic nanomaterial
1. An earlier version of this essay was published in American Studies ,2004, 5-37.
2. X. Mao, T. Alan Hatton ,Industrial and Engineering Chemistry Research ,2015,54,4033−4042.
3. Kendra P. Kuhl, T. Hatsukade, Etosha R. Cave, David N. Abram, J. Kibsgaard, Thomas F. Jaramillo,Journal of the American Chemical Society,2014,136,14107−14113.
4. J.H.Koh, H.S.Jeon, M.S.Jee, Y.J.Hwang, B.K.Min,The Journal of Physical Chemistry ,2015,119,883−889.
5. D.Kim, J.Resasco, Y.Yu, A.M.Asiri, P.Yang ,Nature Communications,2014,5,4948.
6. Christina W. Li,Matthew W. Kanan , Journal of the American Chemical Society,2012, 134, 7231−7234.
7. J.Wu, R.M.Yadav, X.D.Zhou ,P.M.Ajayan, American Chemical Society Nano, 2015, 9, 5364–5371.
8. S.Sen, D.Liu, G.Tayhas R.Palmore, American Chemical Society Catal. 2014, 4, 3091−3095.
9. D.Ren, Y.Deng, A.D. Handoko, C.S.Chen, S. Malkhandi, B.S.Yeo, American Chemical Society Catal. 2015, 5, 2814−2821.
10. K.J.P.Schouten, E.P. Gallent,Marc T.M. Koper, Journal of Electroanalytical Chemistry,2014,716,53–57.
11. J. Rosen, G. S. Hutchings, Q.Lu, S Rivera, Yang Zhou, D G. Vlachos, F Jiao, American Chemical Society Catal. 2015, 5, 4293−4299.
12. D. Raciti, K.J. Livi, C.Wang, Nano Letters.,2015, 15, 6829–6835.
13. R.Kas, R.Kortlever, A.Milbrat,Marc T.M. Koper,G.Mul,J. Baltrusaitis ,The Journal of Physical Chemistry A. 2014, 16, 12194—12201.
14. A.S.Hall, Y.Yoon, A.Wuttig, Y.Surendranath, Journal of the American Chemical Society , 2015, 137,14834–14837.
15. Y.J.Park, Kun-Yi Andrew Lin, Ah-Hyung Alissa Park,C. Petit, Energy Research,2015, 01.
16. W.Luo, X.Nie, M.J.Janik, A. Asthagiri, American Chemical Society Catal. 2016, 6, 219−229.
17. Jung-Hoon Lee, K.J. Gibson, G.Chen,Y.Weizmann , Nature Communications,2015, 6,7571.
18. L.Sun, G.K. Ramesha, P.V. Kamat, J.F.Brennecke, Langmuir 2014, 30, 6302−6308.
19. K.P.Kuhl, E.R.Cave, D.N.Abram , T.F.Jaramillo, Energy and Environ. Science, 2012, 5, 7050–7059.
20. R.Reske , H.Mistry, F.Behafarid, B.R.Cuenya , P. Strasser , Journal of the American Chemical Society, 2014, 136, 6978−6986.
21. C.W. Li, J.C. M.W.Kanan1, Nature,2014, 508, 504–507.
22. H.J.Yang, S.Y.He, H.L.Chen, H.Y. Tuan, Chemistry of Materials, 2014, 26, 1785−1793.
23. Q.Lu, J.Rosen, Z.Yang, G.S. Hutchings, Y.C.Kimmel, J.G. Chen , F.Jiao, Nature Communications,2014, 5, 3242.
24. Andrew A. Peterson, Jens K. Norskov, The Journal of Physical Chemistry ,2012, 3, 251–258.
25. Heine A. Hansen, Joel B. Varley, Andrew A. Peterson,Jens K. Norskov, The Journal of Physical Chemistry,2013,4, 388–392.
26. L.B.Luo, X.H.Wang, C.Xie, Z.J.Li, R.Lu, X.B.Yang,J. Lu, Nanoscale Research Letters. 2014, 9 ,637.
27. A. Tao1, P.Sinsermsuksakul1,P. Yang, Nature Nanotechnology,2007,2, 435-440 .
28. B.Nikoobakht, Mostafa A.El-Sayed, Chemistry Materials,2003, 15 ,1957–1962.
29. M.Feroci, M.Orsini, L. Rossi, G.Sotgiu, A.Inesi,Journal of Organic Chemistry, 2007, 72, 200-203.