簡易檢索 / 詳目顯示

研究生: 周德宇
Chou, Te-Yu
論文名稱: 利用金銅雙金屬奈米材料催化二氧化碳之電化學還原反應
The Development of Gold-Copper Bimetallic Nanocatalyst for Carbon Dioxide Reduction Reaction
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 二氧化碳還原反應水熱法金銅雙金屬奈米材料
英文關鍵詞: carbon dioxide reduction reaction, Hydrothermal, gold-copper bimetallic nanomaterial
DOI URL: https://doi.org/10.6345/NTNU202204351
論文種類: 學術論文
相關次數: 點閱:219下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於溫室效應以及能源危機等議題對於人類的生活影響範圍越來越大 ,對於著手開發新興再生能源的研究也越來越多 ,研究範圍也越來越廣。其中對於開發二氧化碳為可再生能源的研究也日益增加 ,因此研究相關材料基板能有效催化二氧化碳還原反應並且提高效率被視為此研究領域重要的目的。
    而本研究則以利用金銅雙金屬奈米材料作為實驗基板 ,用以催化在電解反應中的二氧化碳順利還原成一氧化碳並計算其法拉第效率。從原本測試利用水熱法所合成的含銅奈米顆粒基板 ,其一氧化碳的法拉第效率約為1.1% ,然而不斷改進方法使用含金離子之溶液直接滴入含銅奈米顆粒基板基板的表面上並進行鍛燒 ,使整體反應能不受介面活性劑的影響直接在基板的表面上作用,並量測得到一氧化碳的法拉第效率得到約為28.8%。

    關鍵字:二氧化碳還原反應;水熱法;金銅雙金屬奈米材料

    In recent years, due to the profound influences of Greenhouse and energy crisis, more researches of discovering renewable energy are increasing and become extensive. Among them developing carbon dioxide reduction reaction is the most crucial part. As a result, making the research into substrates, which catalyze of carbon dioxide reduction reaction and promote the efficiency, is regarded as main purpose.
    This research uses gold-copper bimetallic nanomaterial as a working substrate, in order to catalyze the electrochemical reaction of carbon dioxide reduction and calculate the Faradic efficiency of carbon monoxide. In the beginning, by using Hydrothermal to synthesize the copper nanoparticles on substrate and test the Faradic efficiency of the sample, the result is only around 1.1%. However, by dropping the Au ion solution on the surface of copper nanoparticles substrate with annealing step to promote Faradic efficiency of the sample without any effects from surfactant. Amazingly Faradic efficiency arises to 28.8%.
    Keywords: carbon dioxide reduction reaction ; Hydrothermal ; gold-copper bimetallic nanomaterial

    摘要....................................................I Abstract...............................................II 目錄...................................................IV 圖目錄...............................................VIII 表目錄.................................................XI 謝誌..................................................XII 第一章 緒論...........................................1 1-1 前言...........................................1 1-1-1 研究背景與方法..............................1 1-1-2 電解還原實驗之反應途徑......................6 1-2 文獻回顧........................................8 1-2-1 金屬材料發展................................8 1-2-2 離子溶液改良二氧化碳還原效率...............13 1-2-3 含金銅雙金屬奈米結構的材料應用.............16 1-2-4 銅基板的鍛燒處理...........................18 1-2-5 法拉第效率的計算...........................21 1-3 研究動機與目的..................................22 第二章 儀器設備與工作原理............................23 2-1 實驗儀器設備與實驗方法之原理..................23 2-1-1 高溫爐....................................23 2-1-2 參考電極(Ag/AgCl) .........................24 2-1-3 氣相層析儀(GC) ............................25 2-1-4 惠斯頓電橋.................................26 2-1-5 恆定電位儀.................................28 2-1-6 水熱法.....................................28 2-2 分析儀器設備與原理...........................29 2-2-1 X-光繞射分析儀(XRD) ...................... 29 2-2-2 穿透式電子顯微鏡(TEM) .....................30 2-2-3 掃描式電子顯微鏡(SEM) .....................32 2-2-4 紫外光/可見光譜儀..........................34 2-2-5 螢光光譜儀.................................35 2-2-6 核磁共振儀.................................36 第三章 實驗..........................................37 3-1 實驗藥品與器材................................37 3-1-1 實驗藥品...................................37 3-1-2 實驗器材...................................38 3-2 材料製備......................................39 3-2-1 含銅奈米結構基板製備........................39 3-2-2 金奈米棒狀結構的合成........................40 3-2-3 金奈米棒的純化..............................41 3-2-4 OGS-Au奈米粒子的合成........................42 3-2-5 銀奈米立方體的合成..........................43 3-2-6 銀奈米立方體的純化..........................44 3-2-7 金奈米顆粒的合成............................45 3-3 實驗前置作業與系統架設........................46 3-3-1 實驗前置作業................................46 3-3-2 系統架設....................................47 3-4 二氧化碳電解還原步驟..........................50 第四章 結果與討論....................................51 4-1 材料鑑定......................................51 4-1-1 金奈米棒結構鑑定............................51 4-1-2 金奈米顆粒結構鑑定..........................53 4-1-3 OGS-Au奈米粒子結構鑑定......................54 4-1-4 銀奈米立方體結構鑑定........................56 4-2 二氧化碳還原反應測試............................58 4-2-1 材料基板的測試............................58 4-2-2 氣相體積的影響............................60 4-2-3 雙金屬材料測試............................61 第五章 結論.........................................74 第六章 參考文獻....................................75

    1. An earlier version of this essay was published in American Studies ,2004, 5-37.
    2. X. Mao, T. Alan Hatton ,Industrial and Engineering Chemistry Research ,2015,54,4033−4042.
    3. Kendra P. Kuhl, T. Hatsukade, Etosha R. Cave, David N. Abram, J. Kibsgaard, Thomas F. Jaramillo,Journal of the American Chemical Society,2014,136,14107−14113.
    4. J.H.Koh, H.S.Jeon, M.S.Jee, Y.J.Hwang, B.K.Min,The Journal of Physical Chemistry ,2015,119,883−889.
    5. D.Kim, J.Resasco, Y.Yu, A.M.Asiri, P.Yang ,Nature Communications,2014,5,4948.
    6. Christina W. Li,Matthew W. Kanan , Journal of the American Chemical Society,2012, 134, 7231−7234.
    7. J.Wu, R.M.Yadav, X.D.Zhou ,P.M.Ajayan, American Chemical Society Nano, 2015, 9, 5364–5371.
    8. S.Sen, D.Liu, G.Tayhas R.Palmore, American Chemical Society Catal. 2014, 4, 3091−3095.
    9. D.Ren, Y.Deng, A.D. Handoko, C.S.Chen, S. Malkhandi, B.S.Yeo, American Chemical Society Catal. 2015, 5, 2814−2821.
    10. K.J.P.Schouten, E.P. Gallent,Marc T.M. Koper, Journal of Electroanalytical Chemistry,2014,716,53–57.
    11. J. Rosen, G. S. Hutchings, Q.Lu, S Rivera, Yang Zhou, D G. Vlachos, F Jiao, American Chemical Society Catal. 2015, 5, 4293−4299.
    12. D. Raciti, K.J. Livi, C.Wang, Nano Letters.,2015, 15, 6829–6835.
    13. R.Kas, R.Kortlever, A.Milbrat,Marc T.M. Koper,G.Mul,J. Baltrusaitis ,The Journal of Physical Chemistry A. 2014, 16, 12194—12201.
    14. A.S.Hall, Y.Yoon, A.Wuttig, Y.Surendranath, Journal of the American Chemical Society , 2015, 137,14834–14837.
    15. Y.J.Park, Kun-Yi Andrew Lin, Ah-Hyung Alissa Park,C. Petit, Energy Research,2015, 01.
    16. W.Luo, X.Nie, M.J.Janik, A. Asthagiri, American Chemical Society Catal. 2016, 6, 219−229.
    17. Jung-Hoon Lee, K.J. Gibson, G.Chen,Y.Weizmann , Nature Communications,2015, 6,7571.
    18. L.Sun, G.K. Ramesha, P.V. Kamat, J.F.Brennecke, Langmuir 2014, 30, 6302−6308.
    19. K.P.Kuhl, E.R.Cave, D.N.Abram , T.F.Jaramillo, Energy and Environ. Science, 2012, 5, 7050–7059.
    20. R.Reske , H.Mistry, F.Behafarid, B.R.Cuenya , P. Strasser , Journal of the American Chemical Society, 2014, 136, 6978−6986.
    21. C.W. Li, J.C. M.W.Kanan1, Nature,2014, 508, 504–507.
    22. H.J.Yang, S.Y.He, H.L.Chen, H.Y. Tuan, Chemistry of Materials, 2014, 26, 1785−1793.
    23. Q.Lu, J.Rosen, Z.Yang, G.S. Hutchings, Y.C.Kimmel, J.G. Chen , F.Jiao, Nature Communications,2014, 5, 3242.
    24. Andrew A. Peterson, Jens K. Norskov, The Journal of Physical Chemistry ,2012, 3, 251–258.
    25. Heine A. Hansen, Joel B. Varley, Andrew A. Peterson,Jens K. Norskov, The Journal of Physical Chemistry,2013,4, 388–392.
    26. L.B.Luo, X.H.Wang, C.Xie, Z.J.Li, R.Lu, X.B.Yang,J. Lu, Nanoscale Research Letters. 2014, 9 ,637.
    27. A. Tao1, P.Sinsermsuksakul1,P. Yang, Nature Nanotechnology,2007,2, 435-440 .
    28. B.Nikoobakht, Mostafa A.El-Sayed, Chemistry Materials,2003, 15 ,1957–1962.
    29. M.Feroci, M.Orsini, L. Rossi, G.Sotgiu, A.Inesi,Journal of Organic Chemistry, 2007, 72, 200-203.

    下載圖示
    QR CODE