簡易檢索 / 詳目顯示

研究生: 梁君宜
Chun-Yi Liang
論文名稱: 探索線上影評與美國電影票房間的動態性:評分方向與數量的影響
Exploring the Dynamics between American Motion Pictures’ Online Reviews and Their Box Office: The Impact of Valence and Volume
指導教授: 王仕茹
Wang, Shih-Ju
學位類別: 碩士
Master
系所名稱: 管理研究所
Graduate Institute of Management
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 79
中文關鍵詞: 網路口碑線上影評評分方向與數量電影
英文關鍵詞: Electronic word-of-mouth, Online reviews, Review valence and volume, Motion picture
論文種類: 學術論文
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 網路的發達讓口碑的傳播可以不受到時間與空間的限制,而網路推薦系統的的功能提供人們發表評論與接收評論的平台。對於電影這種經驗財來說,線上影評成為廣告之外幫助觀眾選擇喜歡電影的可靠資訊來源。在許多文獻中,認為評分方向與評論數量是影響電影票房的可能因素,但不同的學者對於何者會影響票房抱持著不同的看法,因此本研究藉由2010年1月至6月在美國上映之電影的追蹤資料(panel data)探究線上影評與電影票房間的動態性。
    本研究仿效Duan, Gu, and Whinston (2008b)的模型,除了修改他們所使用的口碑和收入等式外,另外加入了正負向評論差異等式,並以Yahoo! Movies網站中觀眾對於電影之故事、演技、導演與視覺的評分作為自變數來探究對於評論方向是否具有影響。本研究使用兩階段最小平方法來為三個等式求解。
    本研究發現故事、演技和視覺評分皆會影響正負向評論差異,其中以故事評分的影響力最大。另一方面,除了再度證實Duan et al. (2008b)之結論認為評論數量對於票房具有影響外,也發現評分方向對於票房也具有影響,而票房對於評分方向與數量也都具有影響。

    The development of the Internet helped the WOM spread without the restriction of time and space. The web recommendation system provides people a platform to post and receive reviews. For experience goods such as motion pictures, online reviews have become another reliable source other than commercials to help people choose the movies they may like. Many scholars argued that the reviews’ valence and volume can have an effect on the box office, but there are also those who hold a different opinion to this issue. So this study explores the dynamics between American motion pictures’ online reviews and their box office with the panel data of movies released from Jan, 2010 to Jun, 2010.
    This study followed the model of Duan, Gu, and Winston (2008b), not only were the revenue equation and WOM equation revised, but a POSTDIF equation to explore whether the rating of the story, acting, director, and visuals have an effect on the valence of reviews have also been added. This study used the 2SLS method to solve these three equations.
    This recent study found that the rating of the story, acting, and visuals all have an effect on the volume difference between positive post and negative post, and the rating of the story in particular have the largest influence. On the other hand, this study not only verified Duan’s perspective that the reviews’ volume has an effect on box office revenue, but also found that the reviews’ valence affects the box office. Lastly, the study showed that the box office influences review valence and volume reversibly.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究問題 2 第二章 文獻探討 3 第一節 網路口碑 3 第二節 專業影評的影響 5 第三節 觀眾評論的影響 7 第四節 評論數量與評分方向的影響 8 第三章 研究方法 11 第一節 研究架構 11 第二節 變數定義與衡量 12 第三節 資料分析方法 18 第四章 實證結果與分析 20 第一節 樣本敘述 20 第二節 相關係數分析 32 第三節 兩階段最小平方法分析 34 第五章 結論與建議 40 第一節 研究結論 40 第二節 學術貢獻與管理意涵 42 第三節 未來研究建議 44 參考文獻 45 附錄 52 附錄一 39部電影的固定效果 53 附錄二 39部電影的敘述統計 55 附錄三 39部電影樣本的票房圖 59 表次 表3 1 Yahoo! Movies評分等級所代表的意義 13 表4-1 電影樣本的敘述統計 20 表4-2 關鍵日變數的敘述統計 21 表4-3 電影日票房收入敘述統計分析表 24 表4-4 日評論篇數敘述統計分析表 27 表4-5 正負向評論差異敘述統計分析表 30 表4-6 變數相關係數分析表 33 表4-7 收入等式2SLS估計結果 35 表4-8 口碑等式2SLS估計結果 37 表4-9 正負向評論差異等式2SLS估計結果 39 圖次 圖3-1 變數取得來源 14 圖4-1 電影日票房收入敘述統計折線圖 25 圖4-2 日評論篇數敘述統計折線圖 28 圖4-3 正負向評論差異敘述統計折線圖 31

    一、中文部分
    曾羨書(2006)。《美國電影票房績效研究:從口碑、影評、卡司與電影類型角度觀之》。國立台灣大學國際企業學研究所碩士論文。

    二、英文部分
    Agresti, A., & Winner, L. (1997). Evaluating agreement and disagreement among movie reviewers. Chance. 10(2). 10–14.
    Anderson, E. (1973). Consumer Dissatisfaction: The effect of disconfirmed expectancy on perceived product performance. Journal of Marketing Research. 10(2), 38–44.
    Austin, B. A., & Gordon, T. F. (1987). Movie genres: Toward a conceptualized model and standardized definitions. In B. A. Austin (Ed.), Current research in film: Audiences, economics, and law (Vol. 3, pp. 12–33). Norwood, NJ: Ablex.
    Banerjee, A. (1992). A simple model of herd behavior. Quarterly Journal of Economics. 107(3), 797–817.
    Basuroy, S., Chatterjee, S., & Ravid, S.A. (2003). How critical are critical reviews? The box office effects of film critics, star-power and budgets. Journal of Marketing. 67(10), 103–117.
    Basuroy, S., Desai, K. K., & Talukdar, D. (2006). An empirical investigation of signaling in the motion picture industry. Journal of Marketing Research. 43(5), 287–295.
    Boor, M. (1990). Reliability of ratings of movies by professional movie critics. Psychological Reports. 67(1), 243–257.
    Boor, M. (1992). Relationships among ratings of motion pictures by viewers and six professional movie critics. Psychological Reports. 70(1), 1011–1021.
    Bourdieu, P. (1983). The field of cultural production. Poetics. 12(4-5), 311–356.
    Bourdieu, P. (1984). Distinction: A social critique of the judgement of taste. Cambridge: Harvard U. Press.
    Bourdieu, P. (1986). ―The production of belief: Contribution to an economy of symbolic goods. In Richard Collins et al. (eds.), Media, Culture and Society: A Critical Reader, London: Sage Publications, 131–163.
    Bourdieu, P. (1993). The Field of Cultural Production: Essays on Art and Literature, (ed.) Randal Johnson. New York: Columbia U. Press.
    Brown, J., & Reingen, P. (1987). Social ties and word of mouth referral behavior. Journal of Consumer Research. 14(12), 350–362.
    Chaffee, S. (1982). Inter/Media: Interpersonal Communication in a Media World. New York: Oxford University Press.
    Chen, P. Y., Wu, S. Y., & Yoon, J. (2004). The impact of online recommendations and consumer feedback on sales. Proceedings of the International Conference on
    Information Systems, 711–724.
    Chen, Y., & Xie, J. (2004). Online consumer review: A new element of marketing communications mix. Working Paper, Department of Marketing, University of Florida.
    Chevalier, J., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research. 43(8), 345–354.
    De Vany, A., & Walls, D. (1999). Uncertainty in the movie industry: Does star power reduce the terror of the box office?. Journal of Cultural Economics. 23(4), 285–318.
    Dellarocas, C., Zhang, X., & Awad. N. F. (2007). Exploring the value of online product reviews in forecasting sales: the case of motion pictures. Journal of Interactive Marketing . 11(4), 23-45.
    Desai, K. K., & Basuroy, S. (2005). Interactive influence of genre familiarity, star power, and critics’ reviews in the cultural goods industry: The case of motion pictures. Psychology & Marketing. 22(3), 203–223.
    Dominick, J. R. (1987). Film economics and film content: 1963–1983. In B. A. Austin (Ed.), Current research in film: Audiences, economics, and law (Vol. 3, pp. 136–162). Norwood, NJ: Ablex.
    Duan,W., Gu, B., & Whinston, B. (2008a). Do online reviews matter?-An empirical investigation of panel data. Decision Support System. 45(4), 1007-1016.
    Duan,W., Gu, B., & Whinston, B. (2008b). The dynamics of online word-of-mouth and product sales—An empirical investigation of the movie industry. Journal of
    Retailing. 84(2), 233–242.
    Elberse, A., & Eliashberg, J. (2003). Demand and supply dynamics for sequentially released products in international markets: The case of motion pictures. Marketing Science. 22(3), 329–354.
    Eliashberg, J., & Sugan, S. M. (1997). Film critics: Influencers or predictors? Journal of Marketing. 61(2), 68–78.
    Faber, R., & O’Guinn, T. (1984). Effect of media advertising and other sources on movie selection. Journalism Quarterly. 61(2), 371–377.
    Forman, C., Ghose, A., & Wiesenfeld, B. (2008). Examining the relationship between reviews and sales: The role of reviewer identity discloser in electronic markets. Information Systems Research. 19(3), 291-313.
    Godes, D., & Mayzlin D. (2004). Using online conversations to study word-of-mouth communication. Marketing Science. 23(4), 545–560.
    Graser, M. (2002). Semel gives Yahoo! the business: Internet portal ratchets up H’wood links. Variety, (August 19–25), 11.
    Harvey, N., Harries, C., & Fischer, I. (2000). Using advice and assessing its quality. Organizational Behavior and Human Decision Processes. 81(2), 252–273.
    Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: what motivates consumers to articulate themselves on the Internet?. Journal of Interactive Marketing. 18(1), 38-52.
    Holbrook ,M. (2005). The role of ordinary evaluations in the market for popular culture: Do consumers have ―Good Taste‖?. Marketing Letters. 16(2), 75–86.
    Holbrook, M. B. (1999). Popular appeal versus expert judgments of motion pictures. Journal of Consumer Research. 26(2), 144–155.
    Holbrook, M. B., & Addis, M. (2008). Art versus commerce in the movie industry: a Two-Path Model of Motion-Picture Success. Journal of Cultural Economics. 32(2), 87–107.
    Hu, L., Liu, L., & Zhang, J. J. (2008). Do Online reviews affect product sales?. Information Technology & Management. 9(3), 201–214.
    Kamakura, W. A., Basuroy, S., & Boatwright,P. (2006). Is silence golden? An inquiry into the meaning of silence in professional product evaluations. Quantitative Marketing and Economics. 4(2), 119–141.
    Levin, A. M., Levin, I. P., & Heath, C. E. (1997). Movie stars and authors as brand names: Measuring brand equity in experiential products. Advances in consumer research. 24, 175–181.
    Li, X., & Hitt, L. M. (2008). Self selection and information role of online product reviews. Information Systems Research. 19(4), 456-474.
    Lieberman, A., & Esgate, P. (2002). The entertainment marketing revolution: Bring the mogul, the media, and the magic to the world. Upper Saddle River, NJ: Financial Times/ Prentice Hall.
    Litman, B. R. (1983). Predicting success of theatrical movies: An empirical study. Journal of Popular Culture. 16(1), 159–175.
    Litman, B. R., & Ahn, H. (1998). Predicting Financial Success of Motion Pictures. In B. R. Litman (Ed.), The Motion Picture Mega-Industry. Needham Heights, MA: Allyn & Bacon Publishing Inc.
    Litman, B. R., & Kohl, A. (1989). Predicting financial success of motion pictures: The 80’s experience. The Journal of Media Economics. 2(2), 35–50.
    Liu, Y. (2006). Word-of-mouth for movies: Its dynamics and impact on box office revenue. Journal of Marketing. 70(3), 74–89.
    Murray, K. (1991). A test of services marketing theory: Consumer information acquisition activities. Journal of Marketing. 55(1), 10–25.
    Oliver, R. (1980). Conceptualization and measurement of disconfirmation perceptions in the prediction of consumer satisfaction. Proceedings of Fourth Annual Conference on Consumer Satisfaction, Dissatisfaction, and Complaining Behavior, H. Hunt and R. Day, eds. Bloomington: Indiana University School of Business.
    Olson, J., & Dover, P. (1979). Disconfirmation of consumer expectation through product trial. Journal of Applied Psychology. 64(4), 179–189.
    Ravid, S. A. (1999). Information, blockbusters, and stars: A study of the film industry. Journal of Business. 72(4), 463–492.
    Rosen, E. (2000). The anatomy of buzz: How to create word-of-mouth marketing. New York, NY: Doubleday.
    Sen, S., & Lerman, D. (2007). Why are you telling me this? An examination into negative consumer reviews on the web. Journal of Interactive Marketing. 21(4),76-94.
    Sochay, S. (1994). Predicting the performance of motion pictures. Journal of Media Economics. 7(4), 1–20.
    Srinivasan, S., Anderson, R., & Ponnavolu, K. (2002). Customer loyalty in e-commerce: An exploration of its antecedents and consequences. Journal of Retailing. 78(1), 41–50.
    Subramani, M. R., & Rajagopalan, B. (2003). Knowledge-sharing and influence in online social networks via viral marketing. Communications of the ACM. 46(12), 300-307.
    Sundaram, D. S., Mitra, K., & Webster C. (1998). Word-of-mouth communications: A motivational analysis. Advances in Consumer Research. 25(1), 527–531.
    Vogel, H. (2001). Entertainment Industry Economics: A Guide for Financial Analysis, 5th ed. Cambridge, UK: Cambridge University Press.
    Wallace,W. T., Seigerman, A., & Holbrook, M. B. (1993). The role of actors and actresses in the success of films. Journal of Cultural Economics. 17(1), 1–27.
    Wangenheim, F., & Bay´on, T. (2003). The effect of word of mouth on services switching: Measurement and moderating variables. European Journal of Marketing. 38(9/10), 1173–1195.

    無法下載圖示 本全文未授權公開
    QR CODE