簡易檢索 / 詳目顯示

研究生: 簡薇珊
Chien, Wei-Shan
論文名稱: 探討差異化建模教學對高中學生的演化概念學習與建模能力之影響
Investigating the Effectiveness of the Differentiated Modeling-based Instruction on Evolution Concept Learning and Modeling Competence of High School Students
指導教授: 邱美虹
Chiu, Mei-Hung
顏妙璇
Yen, Miao-Hsuan
口試委員: 邱美虹
Chiu, Mei-Hung
顏妙璇
Yen, Miao-Hsuan
林靜雯
Lin, Jing-Wen
口試日期: 2024/07/29
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 129
中文關鍵詞: 差異化教學建模融入教學建模能力演化概念
英文關鍵詞: Differentiated Instruction, Modeling-based Learning, Modeling Competence, Evolution Concept
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401667
論文種類: 學術論文
相關次數: 點閱:266下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對高中一年級學生設計一個差異化建模課程,欲探討差異化建模課
    程是否能夠讓建模能力及學科成就程度不同的學生皆能有符合自身準備度的教材與教學,因而在建模能力及學科成就上皆有顯著的提升 , 藉此也發展一個可以提供教學現場教師更加適性的科學課程架構 。 由於《十二年國民基本教育課程綱要-自然科學領域》 強調應於每個教育階段貫徹探究與實作 ,又在探究實作中的探究能力也關注建立模型的歷程, 因此可知臺灣科學教育也關注建模教學,除此之外,適性教育也是現今教育更加重視的理念,希望教學能夠更有彈性 、包容性且符合學生的需求,因此本研究欲開發一個能夠有效的在相同的課室中 , 達到針對不同學生需求的差異化建模教學。本研究包含四個研究問題:1.不同教學對於學生的學科成就之影響 2.不同教學對於學生的模型本質知識之影響 3.不同教學對於學生的建模實踐能力之影響 4.學生的建模學習進程為何?
    本研究結果顯示透過差異化建模教學,不同程度 (模型知識與科學概念) 的學
    生在模型本質知識皆能有顯著的提升,而差異化建模教學對於低成就的學生也有助於其在科學概念的學習上有顯著的成效;此外,在學生的建模發展的歷程也發現透過建模架構設計的學習任務可以促使學生從頭建構模型,且不同特質的學生在差異化的教學下,最終皆能建立一具有完整系統的模型。

    This study developed a differentiated modeling-based instruction in biology class for first-year high school students to investigate the effectiveness of the differentiated modeling-based instruction for students’ modeling competence and learning achievement. We expected that the instruction deigned in this study enable different readiness students to have equally significant improvement in their modeling competence and learning achievement. Since the “Curriculum Guidelines of 12-Year Basic Education - The Domain of Natural Science” emphasizes that inquiry and practice should be implemented at every stage of education, and the inquiry ability in inquiry and practice also includes ‘Modeling’, science education in Taiwan is paying attention to modeling competence. In addition, there is another crucial idea in today’s education is adaptive education referring to that teaching should be more flexible, inclusive, and meet the needs of students. Therefore, this study intends to develop a course integrated differentiated instruction and modeling-based learning that can be in line with the trend of education and provides teachers references.
    This study contains three research questions: 1. The impact of different instruction on students’ learning achievement. 2. The impact of different instruction on students’ model knowledge. 3. The impact of different instruction on students’ modeling practice ability. 4. What is the learning progress of students’ modeling?
    The results of this study show that through differentiated modeling instruction, students with different characteristics (model and modeling knowledge and learning achievement) can significantly improve their understanding of model and modeling knowledge, and differentiated modeling-based instruction can also help low-achieving students in their learning. There are significant results in the learning of scientific concepts; in addition, in the process of students' modeling competence development, it is also found that learning tasks designed through the modeling framework can prompt
    students to construct models from scratch, and students with different characteristics can achieve better results under differentiated instruction Finally, a complete system model can be established.

    第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 3 一、 研究目的 3 二、 研究問題 3 第三節 名詞解釋 4 一、 模型 (model) 4 二、 建模 (modeling) 4 三、 建模能力 (modeling competence) 4 四、 演化概念 (evolution concept) 5 五、 建模融入教學 (modeling-based instruction) 5 六、 差異化教學 (differentiated instruction) 5 第四節 研究範圍與限制 6 第貳章 文獻探討 8 第一節 模型與建模 8 第二節 差異化教學 15 第三節 演化概念 18 第四節 文獻對本研究的啟示 19 第參章 研究方法 20 第一節 研究設計 20 一、 研究架構 20 二、 差異化建模教學課程 21 三、 教學材料 31 第二節 研究對象 33 第三節 研究工具 34 一、 單元學科成就測驗 34 二、 模型本質問卷 35 三、 建模實踐能力測驗 36 四、 晤談 38 第四節 資料處理與分析 40 一、 分析工具:建模實踐能力測驗編碼表 40 二、 評分工具:建模實踐能力測驗評分規準 45 第五節 研究流程 47 第肆章 研究結果及討論 48 第一節 學生單元學科成就分析 48 一、 兩組學生單元學科成就前後測分析 48 二、 兩組間學生單元學科測驗分析 50 三、 學科成就分組:單元學科成就測驗分析 53 四、 小結與討論 55 第二節 學生模型本質問卷分析 58 一、 兩組學生模型本質問卷前後測分析 58 二、 兩組間學生模型本質問卷分析 59 三、 模型知識分組:模型本質問卷分析 61 四、 學科成就分組:模型本質問卷分析 63 五、 小結與討論 65 第三節 學生建模實踐能力分析 69 一、 兩組學生建模實踐能力測驗表現比較分析 69 二、 兩組學生於建模實踐能力測驗中各題表現階層比較 70 三、 小結與討論 73 第四節 學生建模發展歷程 74 一、 第一週:模型本質與模型發展 74 二、 第二週:模型精緻化 79 三、 第三週:模型應用 82 四、 第四週:模型重建 84 五、 小結與討論 84 第伍章 結論與建議 88 第一節 結論 88 一、 建模教學對提升學生演化概念學習有正向的效益 88 二、 差異化建模教學對不同模型知識及學科成就學生的模型本質知識具有顯著成效 89 三、 建模實踐能力的培養需要更長且循環式的建模教學 90 四、 差異化建模教學在教學上的實行 91 第二節 建議 93 一、 差異化教學 93 二、 建模融入教學 93 三、 差異化建模教學設計 93 四、 未來研究 94 參考文獻 95 附錄 100 附件一:教學投影片 100 附件二:學習單 109 附件三:模型本質問卷 117 附件四:單元學科測驗 122 附件五:建模實踐能力測驗 126

    李驥與邱美虹 (2019)。NGSS 和 12 年國民基本教育中探究,實作和建模的比較與分析。科學教育月刊(421),19-31。
    林靜雯與邱美虹 (2008)。從認知/方法論之向度初探高中學生模型及建模歷程之知識。科學教育月刊(307),9-14。
    洪振方、莊敏雄與宋國城 (2011)。建模教學對國小學童的模型認知及地質概念理解之影響。科學教育學刊,19(4),309-333。
    張志康與邱美虹 (2009)。建模能力分析指標的發展與應用-以電化學為例。科學教育學刊,17(4),319-342。
    張珮珊、賴吉永與溫媺純 (2017)。科學探究與實作課程的發展,實施與評量:以實驗室中的科學論證為核心之研究。科學教育學刊,25(4),355-389。
    陳俊宏 (主編)(2021)。普通型高級中學生物 (全一冊)。新北市:龍騰出版。
    教育部 (2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校—自然科學領域。臺北:教育部。
    許籐繼 (2022)。十二年國教課綱實施對高中生學習負荷的問題與因應。臺灣教育評論月刊,11(3),7-13。
    郭靜姿 (2000)。談資優學生的特殊適應問題與輔導。資優教育季刊。
    郭靜姿 (2013)。如何實施資優學生的區分性教學?資優教育季刊(127),1-11。
    蔡哲銘 (2020)。探討以「建模導向探究」及「專題導向探究」的教學策略融入「探究與實作」課程設計下之學生學習成果。未出版之博士論文。臺灣博碩士論文系統。(系統編號108NTNU5231022)
    蔡哲銘、邱美虹、曾茂仁與謝東霖 (2019)。探討高中學生於建模導向科學探究之學習成效。科學教育學刊,27(4),207-228。
    Bailer-Jones, D. M. (2002). Scientists' thoughts on scientific models. Perspectives on Science, 10(3), 275-301.
    Bielik, T., Fonio, E., Feinerman, O., Duncan, R. G., & Levy, S. T. (2021). Working Together: Integrating Computational Modeling Approaches to Investigate Complex Phenomena. Journal of Science Education and Technology, 30(1), 40-57.
    Borgerding, L. A., Klein, V. A., Ghosh, R., & Eibel, A. (2015). Student teachers’ approaches to teaching biological evolution. Journal of Science Teacher Education, 26(4), 371-392.
    Campbell, T., Oh, P. S., Maughn, M., Kiriazis, N., & Zuwallack, R. (2015). A review of modeling pedagogies: Pedagogical functions, discursive acts, and technology in modeling instruction. Eurasia Journal of Mathematics, Science and Technology Education, 11(1), 159-176.
    Chang, H.-Y., Liu, C.-C., Wen, C.-T., Chang, M.-H., Fan Chiang, S.-H., & Hwang, F.-K. (2024). The effect of the cyclic curricular design of modelling-based instruction with virtual labs. International Journal of Science Education, 46(1), 46-72.
    Chang, H. Y., Quintana, C., & Krajcik, J. S. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter. Science education, 94(1), 73-94.
    Chiu, M.-H., & Lin, J.-W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1(1), 1-11.
    Clark, B. (1979). Growing up gifted: Developing the potential of children at home and at school.
    Fuhrmann, T., Bar, C., & Blikstein, P. (2020). Identifying discrepant events as a strategy to improve critical thinking about scientific models in a heat transfer unit in middle-school.
    Giere, R. N. (1999). Using models to represent reality. Model-based reasoning in scientific discovery, 41-57.
    Giere, R. N. (2004). How models are used to represent reality. Philosophy of science, 71(5), 742-752.
    Gilbert, J. K., Justi, R., Gilbert, J. K., & Justi, R. (2016). Educating Teachers to Facilitate Modelling-Based Teaching. Modelling-based Teaching in Science Education, 223-251.
    Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822.
    Heddy, B. C., & Sinatra, G. M. (2013). Transforming misconceptions: Using transformative experience to promote positive affect and conceptual change in students learning about biological evolution. Science education, 97(5), 723-744.
    Hermann, R. S. (2013). High school biology teachers’ views on teaching evolution: Implications for science teacher educators. Journal of Science Teacher Education, 24, 597-616.
    Kang, S. H. (2016). Spaced repetition promotes efficient and effective learning: Policy implications for instruction. Policy Insights from the Behavioral and Brain Sciences, 3(1), 12-19.
    Keskin, B., & Özay Köse, E. (2017). Misconceptions of prospective biology teachers about theory of evolution. Necatibey Faculty of Education, Electronic Journal of Science and Mathematics Education, 11(2), 212-242.
    Krell, M., Reinisch, B., & Krüger, D. (2015). Analyzing students’ understanding of models and modeling referring to the disciplines biology, chemistry, and physics. Research in Science Education, 45(3), 367-393.
    Lazenby, K., Stricker, A., Brandriet, A., Rupp, C. A., Mauger‐Sonnek, K., & Becker, N. M. (2020). Mapping undergraduate chemistry students' epistemic ideas about models and modeling. Journal of Research in Science Teaching, 57(5), 794-824.
    Lederman, N. G., Lederman, J. S., & Antink, A. (2013). Nature of science and scientific inquiry as contexts for the learning of science and achievement of scientific literacy. International Journal of Education in Mathematics, Science and Technology, 1(3).
    Maker, C. J. (2023). The DISCOVER assessment & curriculum development model. In Systems and models for developing programs for the gifted and talented (pp. 253-288). Routledge.
    McTighe, J., & Wiggins, G. (2013). Essential questions: Opening doors to student understanding. Ascd.
    Pobiner, B., Watson, W. A., Beardsley, P. M., & Bertka, C. M. (2019). Using human examples to teach evolution to high school students: Increasing understanding and decreasing cognitive biases and misconceptions. Evolution education re-considered: Understanding what works, 185-205.
    Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 46(6), 632-654.
    Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and instruction, 23(2), 165-205.
    Stammen, A., Lan, D., Schuchardt, A., Malone, K., Ding, L., Sabree, Z., & Boone, W. (2016). Development of the secondary-biology concept inventory (S-BCI): A study of content and construct validation. Education Research Highlights in Mathematics, Science and Technology 2016, 2.
    Tomlinson, C. A. (2014). The differentiated classroom: Responding to the needs of all learners. Ascd.
    Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368.
    Upmeier zu Belzen, A., van Driel, J., & Krüger, D. (2019). Introducing a framework for modeling competence. Towards a competence-based view on models and modeling in science education, 3-19.
    Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model‐based inquiry as a new paradigm of preference for school science investigations. Science education, 92(5), 941-967.
    Zhai, X., & Yin, Y. (2023). Using educative learning progression to support novice science teachers’ lesson plan critiques. International Journal of Science Education, 1-30.

    無法下載圖示 電子全文延後公開
    2029/08/14
    QR CODE