簡易檢索 / 詳目顯示

研究生: 蔡孟儒
Tsai, Meng-Ju
論文名稱: 帶自旋波色氣體的熱力學性質研究
Study Thermodynamic with Spinor Condensate
指導教授: 林豐利
Lin, Feng-Li
口試委員: 林豐利
Lin, Feng-Li
游至仕
You, Jhih-Shih
林育如
Lin, Yu-Ju
張銘顯
Chang, Ming-Shien
任祥華
Jen, Hsiang-Hua
口試日期: 2022/01/20
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 98
中文關鍵詞: 帶自旋玻色子封閉系統熱平衡自旋-角動量耦合
英文關鍵詞: spinor BEC, synthetic gauge field, thermalization of closed systems
研究方法: 實驗設計法參與觀察法現象分析
DOI URL: http://doi.org/10.6345/NTNU202200278
論文種類: 學術論文
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究的終極目標在於探究孤立的量子系統如何達到熱平衡。為此,我們打
    造一個帶自旋的原子玻色-愛因思坦凝結實驗,除了可觀察量子氣體達熱平衡動
    態過程之外,亦可測試一些關於熱平衡的必要條件及假說, 包含本徵態熱平衡假
    說、以及系統的可積性等。
    此外,我們提供一個可以利用此系統研究物理的實例。我們針對自旋-質心旋
    轉角動量耦合的物理現象,進行實驗上的驗證。透過雷射光各種可調控的參數,
    可以讓原子團產生在空間上的角動量分布,用以形成自旋-角動量的糾纏態。
    關鍵字:帶自旋玻色子、封閉系統熱平衡、自旋-角動量耦合

    In this thesis, we aimed to study the dynamics of thermalization in a
    closed quantum system. We constructed an atomic spinor Bose-Einstein
    condensates (BEC) experiment to study the related issues. The spinor BEC
    provides a suitable platform to test the theories about thermalization in an
    isolated environment. Our spinor system will enable the tests of the related
    theories, such as the eigenstate thermalization hypothesis (ETH) and the
    integrability of the quantum system.
    Meanwhile, we provide an example of quantum simulation. We demonstrated the spin-orbital angular momentum coupling in spinor BEC. The
    phenomenon reveals the spatial dependent distribution of angular momentum. It is capable to control such coupling by engineering our laser light.
    keywords: spinor BEC, synthetic gauge field, thermalization of closed
    systems

    1 Introduction 1 1.1 Overview 1 1.2 Reviews of spinor Bose-Einstein condensate 2 1.2.1 Dynamics of spinor BEC 2 1.2.2 Spin momentum coupling 6 1.3 Thesis overview 8 2 Preparation of ultra cold atoms 10 2.1 Spectral properties of 87Rb 10 2.2 Hardware setup 12 2.2.1 Ultra high vacuum system 12 2.2.2 Double chamber 13 2.2.3 Coil design 15 2.3 Diode lasers 17 2.3.1 Saturation spectroscopy 20 2.3.2 EOM 21 2.3.3 Power ramping 23 2.4 Imaging system 23 2.4.1 Factor calibration 24 2.4.2 Fluorescence imaging and absorption imaging 25 2.4.3 Cloud temperature 27 2.4.4 Phase space density 27 2.5 Magneto-optical trap 29 2.5.1 Laser cooling and double MOT 29 2.5.2 Sub-Doppler cooling 33 2.6 Optical dipole trap 43 2.6.1 Theoretical background of ODT 43 2.6.2 ODT setup and engineering 49 iii2.6.3 Optimization of trap loading 54 2.7 Microwave system 58 3 BEC production 60 3.1 Reviews of scalar BEC 60 3.1.1 non-interacting Boson 60 3.1.2 Interacting Boson 62 3.2 All-optical Bose-Einstein condensate 65 3.2.1 Force evaporate cooling 66 4 Spinor condensate system 70 4.1 Behaviors of spinor condensate 70 4.1.1 Atomic collisions 70 4.1.2 Second quantzatized Hamiltonian 73 4.1.3 Mean-field theory 74 4.1.4 Spinor in external field 77 4.1.5 Gound state structure in optical trap 79 4.2 Experimental study 80 4.2.1 Thermalization and quantum quench 80 4.2.2 Spin-orbital momentum coupling 84 5 Conclusion and Outlook 90 5.1 Conclusion 90 5.2 Outlook 91 Reference 92

    [1] X.-Y. Luo, Y.-Q. Zou, L.-N. Wu, Q. Liu, M.-F. Han, M. K. Tey, and L. You, “Deterministic entanglement generation from driving through quantum phase transitions,” Science, vol. 355, no. 6325, pp. 620–623, 2017. [Online]. Available:
    https://www.science.org/doi/abs/10.1126/science.aag1106

    [2] Z. Zhang and L.-M. Duan, “Generation of massive entanglement through an adiabatic quantum phase transition in a spinor condensate,”Phys. Rev. Lett., vol. 111, p. 180401, Oct 2013. [Online]. Available:
    https://link.aps.org/doi/10.1103/PhysRevLett.111.180401

    [3] L. Chen, H. Pu, and Y. Zhang, “Spin-orbit angular momentum coupling in a spin-1 bose-einstein condensate,” Phys. Rev. A, vol. 93, p. 013629, Jan 2016. [Online]. Available:
    https://link.aps.org/doi/10.1103/PhysRevA.93.013629

    [4] A. Einstein, Quantentheorie des einatomigen idealen Gases. John Wiley and Sons, Ltd, 2005, pp. 237–244. [Online]. Available:
    https://onlinelibrary.wiley.com/doi/abs/10.1002/3527608958.ch27

    [5] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of bose-einstein condensation in a dilute atomic vapor,” Science, vol. 269, no. 5221, pp. 198–201, 1995. [Online]. Available:
    https://www.science.org/doi/abs/10.1126/science.269.5221.198

    [6] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of bose-einstein condensation in trapped gases,” Rev. Mod. Phys., vol. 71, pp. 463–512, Apr 1999. [Online]. Available:
    https://link.aps.org/doi/10.1103/RevModPhys.71.463

    [7] A. J. Leggett, “Bose-einstein condensation in the alkali gases: Some fundamental concepts,” Rev. Mod. Phys., vol. 73, pp. 307–356, Apr 2001. [Online]. Available:
    https://link.aps.org/doi/10.1103/RevModPhys.73.307

    [8] G.-S. Paraoanu, S. Kohler, F. Sols, and A. J. Leggett, “The josephson plasmon as a bogoliubov quasiparticle,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 34, no. 23, pp. 4689–4696, nov 2001.[Online]. Available:
    https://doi.org/10.1088/0953-4075/34/23/313

    [9] A. Trombettoni and A. Smerzi, “Variational dynamics of bose-einstein
    condensates in deep optical lattices,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 34, no. 23, pp. 4711–4720, nov 2001. [Online]. Available: https://doi.org/10.1088/0953-4075/34/23/315

    [10] J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A, vol. 65, p. 033608, Feb 2002. [Online].
    Available: https://link.aps.org/doi/10.1103/PhysRevA.65.033608

    [11] M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor bose-einstein condensate,” Phys. Rev. Lett., vol. 98, p. 200801, May 2007. [Online]. Available:
    https://link.aps.org/doi/10.1103/PhysRevLett.98.200801

    [12] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose-einstein condensation of chromium,” Phys. Rev. Lett., vol. 94, p. 160401, Apr 2005. [Online]. Available:
    https://link.aps.org/doi/10.1103/PhysRevLett.94.160401

    [13] M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman,
    L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor bose-einstein condensate,” Phys. Rev. Lett., vol. 98, p. 200801, May 2007. [Online]. Available:
    https://link.aps.org/doi/10.1103/PhysRevLett.98.200801

    [14] W. C. Griffth, S. Knappe, and J. Kitching, “Femtotesla atomic magnetometry in a microfabricated vapor cell,” Opt. Express, 94vol. 18, no. 26, pp. 27 167–27 172, Dec 2010. [Online]. Available:
    http://opg.optica.org/oe/abstract.cfm?URI=oe-18-26-27167

    [15] C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spins mixing in spinor
    bose-einstein condensates,” PHYSICAL REVIEW LETTERS, vol. 81, 1998.

    [16] H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Bigelow, “Spin-mixing dynamics of a spinor bose-einstein condensate,” Phys. Rev. A, vol. 60, pp. 1463–1470, Aug 1999. [Online]. Available:
    https://link.aps.org/doi/10.1103/PhysRevA.60.1463

    [17] H. Pu, S. Raghavan, and N. Bigelow, “Manipulating spinor condensates with magnetic fields: Stochastization, metastability, and dynamical spin localization,” Phys. Rev. A, vol. 61, p. 023602, Jan 2000. [Online].
    Available: https://link.aps.org/doi/10.1103/PhysRevA.61.023602

    [18] M.-S. Chang, C. D. Hamley, M. D. Barrett, J. A. Sauer, K. M. Fortier, W. Zhang, L. You, and M. S. Chapman, “Observation of spinor dynamics in optically trapped 87Rb bose-einstein condensates,”Phys. Rev. Lett., vol. 92, p. 140403, Apr 2004. [Online]. Available:
    https://link.aps.org/doi/10.1103/PhysRevLett.92.140403

    [19] M. S. Chang, Q. Qin, W. Zhang, L. You, and M. S. Chapman, “Coherent spinor dynamics in a spin-1 bose condensate,” Nature Physics, vol. 1, pp. 111–116, 11 2005.

    [20] H. Schmaljohann, M. Erhard, J. Kronjäger, M. Kottke, S. van Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K. Sengstock, “Dynamics of F = 2 spinor bose-einstein condensates,” Physical Review Letters, vol. 92, p. 4, 2004.

    [21] T. Kuwamoto, K. Araki, T. Eno, and T. Hirano, “Magnetic field dependence of the dynamics of 87rb spin-2 bose-einstein condensates,”Physical Review A - Atomic, Molecular, and Optical Physics, vol. 69, 2004.

    [22] W. Zhang, D. L. Zhou, M. S. Chang, M. S. Chapman, and L. You, “Coherent spin mixing dynamics in a spin-1 atomic condensate,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 72, 7 2005.

    [23] M. Srednicki, “Chaos and quantum thermalization,” Phys. Rev. E, vol. 50, pp. 888–901, Aug 1994. [Online]. Available:
    https://link.aps.org/doi/10.1103/PhysRevE.50.888

    [24] M. Rigol, V. Dunjko, and M. Olshanii, “Thermalization and its mechanism for generic isolated quantum systems,” Nature, vol. 452, pp. 854–858, 4 2008.

    [25] G. Biroli, C. Kollath, and A. M. Läuchli, “Effect of rare fluctuations
    on the thermalization of isolated quantum systems,” Physical Review
    Letters, vol. 105, 12 2010.

    [26] C. B. Daǧ, S. T. Wang, and L. M. Duan, “Classification of quenchdynamical behaviors in spinor condensates,” Physical Review A, vol. 97, 2 2018.

    [27] V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A. Cornell, “Rapidly rotating bose-einstein condensates in and near the lowest landau level,” Phys. Rev. Lett., vol. 92, p. 040404, Jan 2004. [Online]. Available:
    https://link.aps.org/doi/10.1103/PhysRevLett.92.040404

    [28] Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman, “Bose-einstein condensate in a uniform light-induced vector potential,” Phys. Rev. Lett., vol. 102, p. 130401, Mar 2009. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.102.130401

    [29] Y. J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and I. B. Spielman, “Synthetic magnetic fields for ultracold neutral atoms,” Nature, vol. 462, pp. 628–632, 12 2009.

    [30] Y. J. Lin, R. L. Compton, K. Jiménez-Garcia, W. D. Phillips, J. V. Porto, and I. B. Spielman, “A synthetic electric force acting on neutral atoms,” Nature Physics, vol. 7, pp. 531–534, 2011.

    [31] Y. J. Lin, K. Jiménez-García, and I. B. Spielman, “Spin-orbit-coupled
    bose-einstein condensates,” Nature, vol. 471, pp. 83–86, 3 2011.

    [32] G. Juzeliunas, P. Ãhberg, J. Ruseckas, and A. Klein, “Effective magnetic
    fields in degenerate atomic gases induced by light beams with orbital
    angular momenta,” Physical Review A - Atomic, Molecular, and Optical
    Physics, vol. 71, 5 2005.

    [33] G. Juzeliunas, J. Ruseckas, and P. Öhberg, “Effective magnetic fields induced by eit in ultra-cold atomic gases,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 38, pp. 4171–4183, 12 2005.

    [34] P. Öhberg, G. Juzeliunas, J. Ruseckas, and M. Fleischhauer, “Filled landau levels in neutral quantum gases,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 72, 2005.

    [35] C. Qu, K. Sun, and C. Zhang, “Quantum phases of bose-einstein condensates with synthetic spin-orbital-angular-momentum coupling,” Physical Review A - atomic, Molecular, and Optical Physics, vol. 91, 5 2015.

    [36] ——, “Quantum phases of bose-einstein condensates with
    synthetic spin–orbital-angular-momentum coupling,” Phys. Rev.
    A, vol. 91, p. 053630, May 2015. [Online]. Available:
    https://link.aps.org/doi/10.1103/PhysRevA.91.053630

    [37] H. R. Chen, K. Y. Lin, P. K. Chen, N. C. Chiu, J. B. Wang, C. A. Chen, P. P. Huang, S. K. Yip, Y. Kawaguchi, and Y. J. Lin, “Spinorbital-angular-momentum coupled bose-einstein condensates,” Physical Review Letters, vol. 121, 9 2018.

    [38] P. K. Chen, L. R. Liu, M. J. Tsai, N. C. Chiu, Y. Kawaguchi, S. K. Yip, M. S. Chang, and Y. J. Lin, “Rotating atomic quantum gases with light-induced azimuthal gauge potentials and the observation of the hess-fairbank effect,” Physical Review Letters, vol. 121, 12 2018.

    [39] D. A. Steck, “Rubidium 87 d line data,” 2001. [Online]. Available:
    http://steck.us/alkalidata,

    [40] T. B. Swanson, D. Asgeirsson, J. A. Behr, A. Gorelov, and D. Melconian,“Effcient transfer in a double magneto-optical trap system,” J. Opt. Soc. Am. B, vol. 15, no. 11, pp. 2641–2645, Nov 1998. [Online]. Available: http://www.osapublishing.org/josab/abstract.cfm?URI=josab-15-11-2641

    [41] K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A, vol. 58, pp. 3891–3895, Nov 1998. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.58.3891

    [42] J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Y. B. Ovchinnikov, and T. Pfau, “Intense source of cold rb atoms from a pure two-dimensional magneto-optical trap,” Phys. Rev. A, vol. 66, p. 023410, Aug 2002. [Online]. Available:
    https://link.aps.org/doi/10.1103/PhysRevA.66.023410

    [43] S. Chaudhuri, S. Roy, and C. S. Unnikrishnan, “Realization of an intense cold rb atomic beam based on a two-dimensional magneto-optical trap: Experiments and comparison with simulations,”Phys. Rev. A, vol. 74, p. 023406, Aug 2006. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.74.023406

    [44] M. H. T. Extavour, “Design and construction of magnetic elements for
    trapping and transport of cold neutral atoms,” 2004.

    [45] S. Rosi, A. Burchianti, S. Conclave, D. S. Naik, G. Roati, C. Fort,
    and F. Minardi, “Λ-enhanced grey molasses on the d 2 transition of
    rubidium-87 atoms,” Scientific Reports, vol. 8, 12 2018.

    [46] G.-B. Liao, K.-S. Wu, C.-Y. Shih, Y.-H. Cheng, L.-A. Sun, Y.-J. Lin, and M.-S. Chang, “Optimization of a crossed optical dipole trap for loading and confining laser-cooled atoms,” J. Opt. Soc. Am. B, vol. 34, no. 4, pp. 869–876, Apr 2017. [Online]. Available: http://www.osapublishing.org/josab/abstract.cfm?URI=josab-34-4-869

    [47] K. Yamashita, K. Hanasaki, A. Ando, M. Takahama, and T. Kinoshita, “All-optical production of a large bose-einstein condensate in a double compressible crossed dipole trap,” Phys. Rev. A, vol. 95, p. 013609, Jan 2017. [Online]. Available:
    https://link.aps.org/doi/10.1103/PhysRevA.95.013609

    [48] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical
    dipole traps for neutral atoms,” arxiv, 2000. [Online]. Available:
    https://arxiv.org/abs/physics/9902072

    [49] C.-Y. Huang, C.-C. Chen, L.-A. Sun, G.-B. Liao, K.-S. Wu, Y.-J. Lin, and M.-S. Chang, “A simple recipe for rapid all-optical formation of spinor bose–einstein condensates,” J. Phys. B: At. Mol. Opt. Phys,
    vol. 50, p. 155302, 2017.

    [50] R. Roy, A. Green, R. Bowler, and S. Gupta, “Rapid cooling to quantum degeneracy in dynamically shaped atom traps,” Phys. Rev. A, vol. 93, p. 043403, Apr 2016. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.93.043403

    [51] D. M. Stamper-Kurn and M. Ueda, “Spinor bose gases: Symmetries, magnetism, and quantum dynamics,” Rev. Mod.Phys., vol. 85, pp. 1191–1244, Jul 2013. [Online]. Available:
    https://link.aps.org/doi/10.1103/RevModPhys.85.1191

    [52] T.-L. Ho, “Spinor bose condensates in optical traps,” Phys. Rev. Lett., vol. 81, pp. 742–745, Jul 1998. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.81.742

    [53] L. I. Plimak, C. Weiß, R. Walser, and W. P. Schleich, “Quantum dynamics of atomic coherence in a spin-1 condensate: Mean-field versus many-body simulation,” Optics Communications, vol. 264, pp. 311–320, 8 2006.

    [54] J. M. Deutsch, “Eigenstate thermalization hypothesis,” Reports on Progress in Physics, vol. 81, no. 8, p. 082001, jul 2018. [Online]. Available: https://doi.org/10.1088/1361-6633/aac9f1

    [55] M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,”Rev. Mod. Phys., vol. 82, pp. 3045–3067, Nov 2010. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.82.3045

    無法下載圖示 本全文未授權公開
    QR CODE