簡易檢索 / 詳目顯示

研究生: 雲春萍
Chung-Pyng Yun
論文名稱: 國小學童垂直跳與立定跳遠下肢關節動力學參數信度研究
Reliability Of Selected Lower Limb Joint Kinetic Parameter
指導教授: 劉錦璋
Liu, Gin-Chang
黃長福
Huang, Chen-Fu
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 77
中文關鍵詞: 垂直跳立定跳遠變異性序列分析
英文關鍵詞: vertical jump, standing long jump, variability, sequential estimation procedure
論文種類: 學術論文
相關次數: 點閱:323下載:34
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大部分的研究,總受限於時間、金錢、設備等因素,選擇較少的實驗施作次數,使得實驗缺乏一定的信度及效度。然而透過實驗所得到的數據資料如果缺乏了信度與效度,所得的結果與結論,即使在統計上達到顯著性,也將不具意義。本研究目的為:(一)分別找出垂直跳與立定跳遠,下肢髖、膝、踝關節運動學參數和動力學參的變異係數。(二)分別找出獲得垂直跳與立定跳遠,下肢髖、膝、踝關節的最大力矩和最大功率的穩定值,所需的最少實驗施作次數。本研究受試者為國小學童30名,隨機分成兩組(垂直跳14 名:年齡12.1±0.8歲,身高153.1±6.9公分,體重50.9±12.4公斤;立定跳遠16名:年齡11.4±0.5歲,身高143.7±11.9公分,體重37.4±12.6公斤)。以一部JVC數位攝影機(60Hz)與Kistler測力板(600Hz),同步紀錄受試者在垂直跳與立定跳遠項目,矢狀面的運動學、動力學參數。透過動力學逆過程的方法,獲得其下肢關節最大力矩與功率。以序列分析的方法推估國小學童在立定跳遠與垂直跳實驗中,所需的最少實驗施作次數。本研究結論:(一) 垂直跳項目受試者內的動力學參數其變異係數普遍大於運動學參數(離地瞬間的水平速度除外)的變異係數,其中又以髖關節功率的變異係數較大。(二) 立定跳遠項目受試者內的動力學參數其變異係數普遍大於運動學參數的變異係數,其中又以膝關節功率的變異係數較大。(三) 以序列分析推估最佳的實驗施作次數,垂直跳項目為13次,而立定跳遠項目則為14次。本研究結果建議,未來在研究上為了得到動力學參數平均數的穩定值,較多的實驗施作次數是被建議採用的。

    In the past, many biomechanical studies were constrained by cost, time, and equipments. One of these factors can lead to poor research directly or indirectly. If researches are not sensitive to the statistical power, it may lead to support null hypothesis and claim the result is demonstrating by the treatments or conditions had the effect. The purpose of this study was to (1) find out every coefficient of variation (CV) of selected kinematic and kinetic parameters on lower limb joint of children during vertical jump (VJ) and standing long jump (SLJ). (2) determine the appropriate number of trials to establish a stable mean and reliability of selected kinetic parameters on lower limb joint of children during VJ and SLJ. Thirty primary school students were selected as subject( In VJ, N=14, age 12.1±0.8 years, height 153.1±6.9 cm ,weight 50.9±12.4 kg; In SLJ, N=16, age 11.4±0.5 years, height 143.7±11.9 cm ,weight 37.4±12.6 kg) to perform 25 trials of maximum VJ or SLJ. One Kistler force plate (600Hz) and one JVC digital camera (60Hz) were used to collect the data. The peak moment and power of lower limb joint were calculated by inverse dynamic method. Sequential estimation technique was used to determine the optimum number of trials. Based on the results of this study (1) In VJ, the most CV of kinetic parameters were bigger than kinematics’. ( not including the horizontal speed of center of gravity of takeoff ) And the kinetic parameter, power of hip joint, was the biggest. (2) In SLJ, the most CV of kinetic parameters were bigger than kinematics’. And the kinetic parameter, power of knee joint, was the biggest. (3) the best number of trials was suggested at least 13-trial for VJ and 14-trial for SLJ by Sequential estimation procedure. Therefore, in order to get a stable mean for kinetic variables, a multiple-trial protocol needed to be adopted.

    目 次 中文摘要---------------------------------------------------------------------- I 英文摘要---------------------------------------------------------------------- II 謝誌----------------------------------------------------------------------------- III 目次----------------------------------------------------------------------------- IV 表次----------------------------------------------------------------------------- VIII 圖次----------------------------------------------------------------------------- XI 第壹章 緒論------------------------------------------------------------- 1 第一節、 前言---------------------------------------------------------- 1 第二節、 問題背景---------------------------------------------------- 3 第三節、 研究目的---------------------------------------------------- 6 第四節、 研究範圍---------------------------------------------------- 6 第五節、 研究限制---------------------------------------------------- 6 第六節、 名詞操作性定義------------------------------------------- 7 第貳章 文獻探討------------------------------------------------------ 9 第一節、 動作變異的形式及來源---------------------------------- 9 第二節、 個體內動作變異性的研究------------------------------- 12 第三節、 影響立定跳遠與垂直跳表現之相關變數研究------- 20 第四節、 個體內動作變異的量化與序列分析之研究---------- 23 第五節、 文獻總結---------------------------------------------------- 25 第參章 研究方法與步驟-------------------------------------------- 27 第一節、 研究對象---------------------------------------------------- 27 第二節、 實驗儀器---------------------------------------------------- 27 第三節、 實驗日期地點與場地佈置------------------------------- 28 第四節、 實驗步驟---------------------------------------------------- 29 第五節、 資料處理---------------------------------------------------- 31 第六節、 統計方法---------------------------------------------------- 38 第肆章 結果與討論--------------------------------------------------- 39 第一節、 垂直跳項目參數間的變異性比較---------------------- 39 一、運動學參數--------------------------------------------------- 39 二、動力學參數--------------------------------------------------- 42 第二節、 立定跳遠項目參數間的變異性比較------------------- 49 一、運動學參數--------------------------------------------------- 49 二、動力學參數--------------------------------------------------- 51 第三節、 序列分析推估最少實驗施作次數---------------------- 57 一、垂直跳項目--------------------------------------------------- 57 二、立定跳遠項目------------------------------------------------ 59 三、序列分析的應用--------------------------------------------- 59 第伍章 結論與建議---------------------------------------------------- 63 第一節、 結論----------------------------------------------------------- 63 第二節、 建議----------------------------------------------------------- 64 引用文獻--------------------------------------------------------------------- 65 一、中文部分------------------------------------------------------------ 65 二、英文部分------------------------------------------------------------ 65 附錄一、受試者同意書------------------------------------------------ 69 附錄二、受試者內垂直跳運動學參數平均值、標準差及 變異係數表--------------------------------------------- 70 附錄三、受試者內垂直跳動力學參數平均值、標準差及 變異係數表--------------------------------------------- 71 附錄四、受試者內垂直跳下肢各關節力矩平均值、標準 差及變異係數表--------------------------------------- 72 附錄五、受試者內垂直跳下肢各關節功率平均值、標準 差及變異係數表--------------------------------------- 73 附錄六、受試者內立定跳遠運動學參數平均值、標準差 及變異係數表------------------------------------------ 74 附錄七、受試者內立定跳遠動力學參數平均值、標準差 及變異係數表------------------------------------------ 75 附錄八、受試者內立定跳遠下肢關節力矩(N·m/BW)平均 值、標準差及變異係數表--------------------------- 76 附錄九、受試者內立定跳遠下肢關節功率(W/BW)平均值 、標準差及變異係數表------------------------------ 77 表 次 表2-1 步態週期下個體內下肢關節力矩變異表---------------------- 12 表3-1 受試者基本資料---------------------------------------------------- 27 表3-2 人體肢段參數------------------------------------------------------- 31 表4-1 垂直跳受試者間運動學參數平均值、標準差及變異係數 ------------------------------------------------------------------------ 39 表4-2 垂直跳受試者內運動學參數CV變異數分析摘要表-------- 41 表4-3 垂直跳受試者內運動學參數CV變異數分析事後比較摘 要表------------------------------------------------------------------ 41 表4-4 垂直跳受試者運動學參數平均值、標準差及變異係數---- 43 表4-5 垂直跳受試者內動力學參數CV變異數分析摘要表-------- 45 表4-6 垂直跳受試者內動力學參數CV變異數分析事後比較摘 要表------------------------------------------------------------------ 45 表4-7 垂直跳受試者間下肢關節力矩功率平均值、標準差及變 異係數--------------------------------------------------------------- 46 表4-8 垂直跳受試者內下肢關節力矩功率CV變異數分析摘要 表--------------------------------------------------------------------- 47 表4-9 垂直跳受試者內下肢關節力矩功率CV變異數分析事後比 較摘要表------------------------------------------------------------ 47 表4-10 立定跳遠受試者間運動學參數平均值、標準差及變異係 數-------------------------------------------------------------------- 49 表4-11 立定跳遠受試者內運動學參數CV變異數摘要表-------- 50 表4-12 立定跳遠受試者內運動學參數CV變異數事後比較摘要 表-------------------------------------------------------------------- 50 表4-13 立定跳遠受試者間動力學參數平均值、標準差及變異係 數-------------------------------------------------------------------- 52 表4-14 立定跳遠受試者內動力學參數CV變異數分析摘要表 ----------------------------------------------------------------------- 53 表4-15 立定跳遠受試者內動力學參數CV變異數分析事後比較 摘要表-------------------------------------------------------------- 54 表4-16 立定跳遠受試者間下肢關節力矩功率平均值、標準差 及變異係數-------------------------------------------------------- 54 表4-17 立定跳遠受試者內下肢關節力矩功率CV變異數分析摘 要表----------------------------------------------------------------- 56 表4-18 立定跳遠受試者內下肢關節力矩功率CV變異數分析事 後比較摘要表----------------------------------------------------- 56 表4-19 垂直跳下肢關節力矩功率序列分析次數表----------------- 57 表4-20 立定跳遠下肢關節力矩功率序列分析次數表-------------- 59 表4-21 不同區間範圍選擇下垂直跳下肢關節力矩序列分析次數 表-------------------------------------------------------------------- 60 圖 次 圖1-1 步態週期中個體內關節力矩變異圖----------------------------- 4 圖2-1 跑步距離與動作變異的關係圖----------------------------------- 14 圖2-2 以序列分析推估關節力矩獲得穩定值的最少實驗施作次數圖 ------------------------------------------------------------------------ 24 圖3-1 實驗場地佈置圖---------------------------------------------------- 28 圖3-2 反光球黏貼位置圖------------------------------------------------- 29 圖3-3 下肢肢段與關節角度定義圖------------------------------------- 32 圖3-4 下肢各關節力矩作用圖------------------------------------------- 33 圖3-5 踝關節之自由體圖------------------------------------------------- 34 圖3-6 膝關節之自由體圖------------------------------------------------- 35 圖3-7 髖關節之自由體圖------------------------------------------------- 36 圖4-1 垂直跳運動學參數示意圖---------------------------------------- 40 圖4-2 垂直跳受試者內運動學參數變異係數圖---------------------- 41 圖4-3 垂直跳肢段動作連續圖------------------------------------------- 42 圖4-4 垂直跳項目垂直方向力量-時間曲線圖------------------------ 42 圖4-5 垂直跳受試者內動力學參數變異係數圖---------------------- 44 圖4-6 垂直跳受試者內下肢關節力矩功率變異係數圖------------- 47 圖4-7 立定跳遠受試者內運動學參數變異係數圖------------------- 50 圖4-8 立定跳遠肢段動作連續圖---------------------------------------- 51 圖4-9 立定跳遠垂直方向(藍線)和前後方向(綠線)力量-時間曲線 圖-------------------------------------------------------------------- 51 圖4-10 立定跳遠受試者內動力學參數變異係數圖----------------- 53 圖4-11 立定跳遠受試者內下肢關節力矩功率變異係數圖-------- 55 圖4-12 以序列分析的方式推估獲得踝關節力矩穩定的平均值所 需要的最少實驗施作次數------------------------------------- 58 圖4-13 以序列分析推估不同排列方式下的下肢關節功率的最佳 實驗施作次數---------------------------------------------------- 61

    引用文獻
    一、中文部分
    林正常、黃勝裕、陳重佑。(民89)。蹲踞跳與下蹲跳之垂直跳躍指標與等速肌力探討。體育學報,27,91-98。

    林清山。(民81)。心理與教育統計學。台北市:東華書局。

    黃國銓。(民91)。以動力學逆過程探討排球扣球起跳動作。未出版的碩士論文,國立台灣師範大學體育研究所。台北市:台灣。

    陳超塵。(民63)。統計學原理。台北市:大中國圖書公司。

    謝伸裕。(民87)。身體活動研究法。(增訂版)。台北市:力大圖書公司。

    鍾寶弘、相子元。(民89)。垂直跳表現好壞之力學因素分析。國立體育學院論叢,11,(1),163-181。

    二、英文部分
    Adrian, M. J., & Cooper, J. M. (1995). Biomechanics of human movement (2nd ed.), Iowa: Wm .C. Brown communication, Inc.

    Aguado, X., Izquierdo, M., & Montesinos, J. L. (1997). Kinematic and kinetic factors related to the standing long jump performance, Journal of Human Movement Studies, 32, 156-169.

    Aragon-Vargas, L. F., & Gross, M. M. (1997a). Kinesiological factor in vertical jump performance: differences among individuals. Journal of Appilied Biomechanics, 13, 24-44.

    Aragon-Vargas, L. F., & Gross, M. M. (1997b). Kinesiological factor in vertical jump performance: differences within individuals. Journal of Appilied Biomechanics, 13, 45-65.

    Bates, B. T., Osterning, L. R., Sawhill, J. A., & Jame, S. L. (1983). An assessment of subject variability, subject-shoe interaction, and the evaluation of running shoes using ground reaction force data. Journal of Biomechanics, 16, 181-191.

    Bates, B. T. (1989). Comment on “the influence of running velocity and midsole hardness on external impact forces in heel-toe running”. Journal of Biomechanics, 22, 963-965.

    Bobbert, M. F., Gerritsen, K. G. M., Litjen, M. C. A., & Van Soest, A. J. (1996). Why is countermovement jump height greater than squat jump height? Medicine and Science in Sports and Exercise, 28, 1402-1412.

    DeVita, P., & Bates, B. T. (1988). Intraday reliability of ground reaction force data. Human Movement Science, 7, 73-85.

    Hamill, J., & McNiven, S. L. (1990). Reliability of selected ground reaction force parameters during walking. Human Movement Science, 9, 117-131.

    Hatze, H. (1984). Quantitative analysis, synthesis and optimization of human motion. Human Movement Science, 3, 5-25.

    Hatze, H. (1986). Motion variability-its definition, quantification, and origin. Journal of Motor Behavior, 18, 5-16.

    Hopkins, W. G., Schabort, E. J., & Hawley, J. A. (2001). Reliability of power in physical performance tests. Sport Medicine, 31, 211-234.

    Horita, T., Kitamura, K., & Kohno, N. (1991). Body configuration and joint moment analysis during standing long jump in 6-yr-old children and adult males. Medicine and Science in Sports and Exercises, 23, 1068-1077.

    Jacob, R., Maarten, F., Bobbert, M. F., & ven Ingen Schenau, G. J. (1996). Mechanical output from individual muscles during explosive leg extension: the role of biarticular muscles. Journal of Applied Biomechanics, 12, 513-523.

    Jensen, R. K. (1989). Changes in segment inertia proportions between 4 and 20 years. Journal of Biomechanics, 22, 529-536.

    Kibele, A. (1998). Possibilities and limitations in the biomechanical analysis of countermovement jump: A methodological study. Journal of Applied Biomechanics, 14, 105-117.

    Kinoshita, H., Bates, B. T., & DeVita, P. (1985). Intertrial variability for selected running gait parameter. In: Winter, R., Norman, R., Wells, K., Hayes, J. and Patla, A. (eds.), Biomechanics IX-A. Champaign, IL: Human Kinetics.

    Newell, K. M., & Corcos, D. M. (1991). Issues in variability and motor control. Newell, K. M., & Corcos, D. M. (Eds.), Variability and motor control. (pp.1-12). Champaign, IL: Human Kinetics.

    Nigg, B. M., Bahlsen, H. A., Luethi, S. M., & Stokes, S. (1987). The influence of running velocity and midsole hardness on external impact forces in heel-toe running. Journal of Biomechanics, 20, 951-959.

    Martin, P. E., & Cavanagh, P. R. (1990). Segment interactions within the swing leg during unloaded and loaded running. Journal of Biomechanics, 23, 529-536.

    Robertson, D. G. E., & Fleming, D. (1987). Kinetics of standing broad and vertical jump. Canada Journal of Sport Science, 12, 19-23.

    Rodano, R., & Squadrone, R. (2002). Stability of selected lower limb joint kinetic parameters during vertical jump. Journal of Applied Biomechanics, 18, 83-89.

    Salo, A., & Grimshaw, P. N. (1998). An examination of kinematic variability of motion analysis in sprint hurdles. Journal of Appilied Biomechanics, 13, 45-65.

    Simpson, K. J., Ciapponi, T., & Wang, H. (2000). Biomechanics of landing. In: William, E., Garrett, Jr., & Kirkendall, D. T., (Eds). Exercise and sport science. Philadelphia: William & Wilkin.

    Thomas, J. R., & Nelson, J. K. (1996). Research method in physical activity. (3rd ed.). Champaign, IL: Human Kinetics.

    Tomioka, M. ,Owings, T. M., & Grabiner, M. D. (2001). Lower extremity strength and coordination are maximum vertical jump height. Journal of Applied Biomechanics, 17, 181-187.

    Voigt, M., Simonsen, E. B., Dyhre-Poulsen, P., & Klausen, K. (1995). Mechanical and muscular factors influencing the performance in maximal vertical jumping after different prestretch loads. Journal of Biomechanics, 28, 293-307.

    Wetherill, G. B. (1975). Sequential methods in statistics. (2nd).Chapman and Hall , Ltd.

    Winter, D. A. (1984). Kinematic and kinetic patterns in human gait: variability and compensating effect. Human Movement Science, 3, 51-76.

    Winter, D. A. (1990). Biomechanics and motor control of human movement. (2nd). John Wiley & Sons, Inc.

    QR CODE