簡易檢索 / 詳目顯示

研究生: 黃詣翔
Huang, Yi-Hsiang
論文名稱: 一鍋化合成具有生物活性之吲哚並[2,3-b]喹啉及2-芐苯並呋喃衍生物
One pot synthesis of bioactive 6H-indolo[2,3-b]quinolone and 2-benzylbenzofuran derivatives
指導教授: 姚清發
Yao, Ching-Fa
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 194
中文關鍵詞: 吲哚並[2,3-b]喹啉具生物活性2-芐苯並呋喃
英文關鍵詞: indolo[2,3-b]quinolone, bioactive, 2-benzylbenzofuran
論文種類: 學術論文
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為兩個章節。
    第壹章先介紹含氮雜環化合物,並回顧近年來各種合成含氮雜環化合物的相關文獻及在醫療上作為藥物的相關應用,另外也回顧吲哚並喹啉衍生物的相關文獻。第壹章分為兩個步驟,第一步驟為在室溫中2-碘苯乙晴在鹼(碳酸銫)的作用下,作為親核性反應試劑,與2-乙醯胺基苯甲醛類化合物進行反應,第二部分為反應過程中藉由提高溫度、加入碘化亞銅及鄰二氮菲催化中間產物進行烏爾曼反應,合成吲哚並[2,3-b]喹啉衍生物。第壹章的最後利用碘甲烷,將吲哚並[2,3-b]喹啉衍生物進行甲基化,合成天然藥物Neocryptolepine。
    第貳章為2-芐苯並呋喃衍生物的合成,首先介紹含氧雜環化合物及其在生活及醫藥上的應用,也回顧苯並呋喃衍生物的相關文獻及在醫療上作為藥物的相關應用。反應利用2-(2-硝基乙基)苯基乙醯在鹼(DBU)的作用下做為親核性試劑的反應探討,與苯甲醛類化合物進行反應,合成在醫療研究上具有潛力的2-芐苯並呋喃衍生物。

    The content of this dissertation is divided into two parts. Part I is subdivided into two sections. Section 1 describes the introduction of nitrogen containing heterocycles and recent literature reports in this field. Moreover, we also mentioned the literature review of indoloquinoline derivatives. Section 2 describes, “ Copper catalyzed one-pot synthesis of bioactive 6H-indolo[2,3-b] quinoline derivatives”. In addition, this protocol is also used for the synthesis of Neocryptolepine (natural product). Part II is subdivided into two sections. Section 1 deals with the introduction of heterocyclic compounds containing oxygen atom and the pharmaceutical applications of these heterocycles and recent literature reports. Section 2 deals with the “one-pot synthesis of 2-benzylbenzofuran derivatives” from commercially available starting materials.

    中文摘要..................................................I Abstract.................................................II 一、 第一部分、吲哚並[2,3-b]喹啉的合成................................1 1. 前言.........................................................1 1-1.有關吲哚................................................3 1-2.有關喹啉................................................8 1-3.有關吲哚並喹啉.........................................12 2. 結果與討論..................................................19 2-1. 最佳化條件探討........................................19 2-2. 化合物3a取代基效應的探討.............................26 2-3. 反應機構..............................................33 2-4. 合成方法的限制........................................34 2-5. 天然物的合成:化合物3a進行甲基化合成.................38 3. 結論........................................................39 參考文獻.......................................................40 二、第二部分、2-芐苯並呋喃的合成....................................45 1. 前言........................................................45 1-1.有關苯並呋喃...........................................48 2. 結果與討論..................................................54 2-1. 最佳化條件探討........................................54 2-2. 化合物3a取代基效應的探討.............................64 2-3. 反應機構..............................................67 2-4. 合成方法之限制........................................68 3. 結論........................................................69 參考文獻.......................................................70 實驗部分 分析儀器及基本實驗操作.............................................73 第一部分實驗步驟...................................................75 光譜資料...................................................78 第一部分1H-NMR及13C-NMR光譜附圖...............................93 第二部分實驗步驟...................................................95 光譜資料...................................................99 第二部分1H-NMR及13C-NMR光譜附圖...............................105

    第一部分
    1. Baeyer, A. Chemische Berichte., 1866, 140 (3), 295-296.
    2. Fischer, E.; Jourdan, F. Ber. 1883, 16, 2241.
    3. Stokes, B. J.; Dong, H. B.; Leslie, E. A.; Pumphrey, L.; Driver. T. G. J. Am. Chem. Soc., 2007, 129, 7500-7501.
    4. Wei, Y.; Deb, I.; Yoshikai, N.; J. Am. Chem. Soc., 2012, 134, 9098-9101.
    5. Varela-Fernández, A.; Varela, J. A.; Saá, C. Synthesis, 2012, 44, 3285-3295.
    6. Jadhav, J.; Gaikwad, V.; Kurane, R.; Salunkhe, R.; Rahsinkar, G. Synlett, 2012, 23, 2511-2515.
    7. Friedländer, P. Chemische Berichte, 1882,15 (2), 2572.
    8. Nitin T. Patil and Vivek S. Raut, J. Org. Chem., 2010, 75 (20), 6961–6964
    9. Basavaiah, D.; Reddy, R.M.; Kumaragurubaran, N.; Sharada, D.S. Tetrahedron, 2002, 58, 3693–3697.
    10. Chan Sik Cho, Byoung Ho Oh, Joon Seok Kim, Tae-Jeong Kim and Sang Chul Shim, Chem. Commun., 2000, 1885–1886
    11. Gellert, E.; Schlittler, E. Helv Chim Acta. 1951,34,642–51.
    12. Dwuma-Badu, D.; Ayim, K.; Fiagbe, Y.; Knapp, E.; Sciff, L.; Slatkin, J., J. Pharm. Sci. 1978, 67, 433.
    13. Boganyi, J. Tetrahedron, 2013, 69, 9512-9519.
    14. Parvatkar P. T. Tetrahedron Letters 2007, 48, 7870–7872
    15. Parvatkar P. T. J. Org. Chem. 2009, 74, 8369-8372.
    16. Parvatkar P. T. Eur. J. Org. Chem. 2013, 20, 4280-4284.
    17. Deevi Basavaiah and Daggula Mallikarjuna Reddy, Org. Biomol. Chem., 2012,10, 8774–8777
    第二部分
    1. McElwee-White, L.; Arkinoc, 2010 (viii), 160-166
    2. Stephen, A.; Hashmi, K.; Wolfle, M. Tetrahedron, 2009, 65 , 9021–9029
    3. Cadogan, J.G.; McNab, H. J. Chem. Soc.,Chem. Commun., 1993, 959-960.
    4. Topolski, M. J. Org. Chem. 1995, 60, 5588-5594
    5. Otterlo, Tetrahedron Letters, 2003, 44, 311-313

    無法下載圖示 本全文未授權公開
    QR CODE