簡易檢索 / 詳目顯示

研究生: 沈宗岳
Shen, Zong-Yue
論文名稱: 智慧型分數階動態面同動控制之三軸龍門式定位平台
Intelligent Fractional-Order Dynamic Surface Synchronous Control for Three-Axis Gantry Positioning Stage
指導教授: 陳瑄易
Chen, Syuan-Yi
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 128
中文關鍵詞: 龍門式定位平台永磁線型同步馬達三自由度龍門動態模型動態面控制同動控制樹突狀神經網路分數階濾波器
英文關鍵詞: gantry positioning stage, magnet linear synchronous motor, three-degree-of-freedom gantry dynamic model, dynamic surface control, synchronous control, dendritic neural model, fractional-order filter.
DOI URL: http://doi.org/10.6345/NTNU202001366
論文種類: 學術論文
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 誌謝 i 摘要 ii ABSTRACT iii 目錄 v 表目錄 viii 圖目錄 ix 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究目的與方法 6 1.4 研究架構 7 第2章 龍門式定位平台介紹 9 2.1 永磁線型同步馬達之基本介紹 9 2.2 永磁線型同步馬達之驅動器 12 2.3 基於個人電腦之龍門式定位平台控制系統 13 2.3.1 硬體架構及流程 15 2.3.2 軟體程式流程 16 第3章 樹突狀神經網路 17 3.1 樹突狀神經網路 17 3.1.1 樹突狀神經網路簡介 17 3.1.2 樹突狀神經網路之架構 19 3.2 基於樹突狀神經網路之控制器設計 25 3.2.1 樹突狀神經網路控制器之架構 25 3.2.2 樹突狀神經網路控制器之模擬驗證 27 第4章 智慧型分數階動態面同動控制之三軸龍門式定位平台 32 4.1 單軸永磁線型同步馬達之工作原理 32 4.2 三自由度龍門動態模型 34 4.3 基於三自由度龍門動態模型之動態面控制器 38 4.3.1 動態面控制介紹 38 4.3.2 動態面控制器設計 43 4.4 基於三自由度龍門動態模型之分數階動態面控制器 47 4.4.1 分數階微積分介紹 48 4.4.2 分數階動態面控制器設計 50 4.5 基於三自由度龍門動態模型之智慧型分數階動態面控制器 55 4.5.1 樹突狀神經網路估測器之架構 55 4.5.2 智慧型分數階動態面控制器設計 59 第5章 實驗結果與討論 64 5.1 實驗設置 64 5.2 實驗結果 67 5.2.1 條件一之實驗結果圖 68 5.2.2 條件二之實驗結果圖 82 5.2.3 條件三之實驗結果圖 96 5.3 實驗結果討論 110 第6章 結論與未來展望 117 參考文獻 118 自傳 127 學術成就 128

    [1] TMTF/工具機發展基金會,http://www.tami.org.tw/statistics/2019_global_mt.pdf
    [2] A. Arian, B. Danaei, H. Abdi and S. Nahavandi, “Kinematic and dynamic analysis of the gantry-tau, a 3-DoF translational parallel manipulator,” Applied Mathematical Modelling, vol. 51, pp. 217-231, Nov. 2017.
    [3] K. Cho, J. Kim, S. B. Choi and S. Oh, “A high-precision motion control based on a periodic adaptive disturbance observer in a PMLSM,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp. 2158-2171, 2015.
    [4] Y. S. Kung, “Design and implementation of a high-performance PMLSM drives using DSP chip,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1341-1351, 2008.
    [5] M. C. Tsai, I. F. Chiu and M. Y. Cheng, “Design and implementation of command and friction feedforward control for CNC motion controllers,” IEE Proceedings - Control Theory and Applications, vol. 151, no. 1, pp. 13-20, 2004.
    [6] F. J. Lin, P. H. Shieh and P. H. Shen, “Robust recurrent-neural-network sliding-mode control for the X-Y table of a CNC machine,” IEE Proceedings - Control Theory and Applications, vol. 153, no. 1, pp. 111-123, 2006.
    [7] M. F. Corapsiz and K. Erenturk, “Trajectory tracking control and contouring performance of three-dimensional CNC,” IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2212-2220, 2016.
    [8] 林玠虢,“高精密度雙軸鐵心式永磁同步伺服線性馬達定位平台之控制器設計與性能分析”,國立臺灣師範大學機電工程學系,碩士論文,2015年六月。
    [9] F. J. Lin, P. J. Wai and C. M. Hong, “Hybrid supervisory control using recurrent fuzzy neural network for tracking periodic inputs, ” IEEE Transactions on Neural Networks, vol. 12, no. 1, pp. 68-90, 2001.
    [10] X. Liu, G. Gu and K. Zhou, “Robust stabilization of MIMO nonlinear systems by backstepping, ” Automatica, vol. 35, no. 5, pp. 987-992, 1995.
    [11] P. V. Kokotovic, “The joy of feedback: nonlinear and adaptive,” IEEE Control Systems, vol. 12, no. 3, pp. 7-17, 1992.
    [12] I. Kanellakopoulos, P. V. Kokotovic and A.S. Morse “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Transactions on Automatic Control, vol. 36, no. 11, pp. 1241-1253, 1991.
    [13] 江國維,“基於倒階法則之積分型順滑模態控制應用於可變速風力發電機”,國立交通大學機械工程學系,碩士論文,2002年六月。
    [14] F. J. Lin, P. H. Shieh and P. H. Chou, “Robust adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network,” IEEE Trans. Fuzzy Systems, vol. 16, no. 3, pp. 672-692, 2008.
    [15] J. Yu, Y. Ma, B. Chen ,H. Yu and S. Pan, “Adaptive neural position tracking control for induction motors via backstepping,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 7, pp. 4503-4516, 2011.
    [16] D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, “Dynamic surface control for a class of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 45, no. 10, pp. 1893–1899, 2000.
    [17] Y. H. Chang and W. S. Chan, “Adaptive dynamic surface control for uncertain nonlinear systems with interval type-2 fuzzy neural networks,” IEEE Transactions on Cybernetics, vol. 44, no. 2, pp. 293-304, 2014.
    [18] S. Ghasemi, A. Tabesh and J. A. Marnani, “Application of fractional calculus theory to robust controller design for wind turbine generators,” IEEE Transactions on Energy Conversion, vol. 29, no. 3, pp. 780-787, 2014.
    [19] Q. Xue and H. B. Duan, “Robust attitude control for reusable launch vehicles based on fractional calculus and pigeon-inspired optimization,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 1, pp. 89-97, 2017.
    [20] R. L. Magin, “Fractional calculus in bioengineering: A tool to model complex dynamics,” Proceedings of the 13th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 2012.
    [21] I. Petras, Y. Chen and C. Coopmans, “Fractional-order memristive systems,” 2009 IEEE Conference on Emerging Technologies & Factory Automation, Mallorca, Spain, 2009.
    [22] C. Zhao, D. Xue and Y. Chen, “A fractional order PID tuning algorithm for a class of fractional order plants,” IEEE International Conference Mechatronics and Automation , Niagara Falls, Ont., Canada 2005.
    [23] S. Kapoor, M. Chaturvedi and P. K. Juneja, “Design of fractional order PID controller for a SOPD process model,” 2017 Fourth International Conference on Image Information Processing, Shimla, India, 2017.
    [24] 徐韶鴻,“應用改良型粒子群演算法於分數階系統之分數階PID控制器設計”,國立高雄應用科技大學電機工程學系,碩士論文,2015年七月。
    [25] 楊孟晨,“基於最佳化分數階模糊PID控制之X-Y音圈馬達定位平台”,國立臺灣師範大學電機工程學系,碩士論文,2019年七月。
    [26] C. Wang and M. Liang, “Adaptive NN tracking control for nonlinear fractional- order systems with uncertainty and input saturation,” IEEE Access, vol. 6, pp. 70035-70044, 2018.
    [27] P. Gong and W. Lan, “Adaptive robust tracking control for multiple unknown fractional-order nonlinear systems,” IEEE Transactions on Cybernetics, vol. 49, no. 4, pp. 1365-1376, 2019.
    [28] A. Mujumdar, B. Tamhane and S.Kurode, “Observer-based sliding mode control for a class of noncommensurate fractional-order systems,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp. 2504-2512, 2015.
    [29] W. S. McColloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The bulletin of mathematical biophysics, vol. 5, pp.115-133, 1943.
    [30] 李穎,“類神經網路應用於國道客運班車旅行時間預測模式之研究”,國立成功大學交通管理學系,碩士論文,2002年六月。
    [31] 林佩蓉,“蔬菜批發價格漲跌幅預測之研究─線性與非線性模式之比較”,國立中興大學行銷學系,碩士論文,2002年六月。
    [32] 辜炳寰,“類神經網路於土壤液化評估之應用”,國立成功大學土木工程學系,碩士論文,2002年六月。
    [33] 薛湘樺,“大數據分析在港口智慧化航道監控之研究”,國立高雄科技大學航運技術學系,碩士論文,2018年六月。
    [34] S. Zhang, X. Pan, Y. Cuil, X. Zhao and L. Liu, “Learning affective video features for facial expression recognition via hybrid deep learning,” IEEE Access, vol. 7, pp. 32297-32304, 2019.
    [35] X. Yang, P. Zhou and M. Wang, “Person reidentification via structural deep metric learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 10, pp. 2987-2998, 2019.
    [36] M. Alhussein and G. Muhammad, “Voice pathology detection using deep learning on mobile healthcare framework,” IEEE Access, vol. 6, pp. 41034-41041, 2018.
    [37] B. Wu, K. Li, F. Ge, Z. Huang, M. Yang, S. M. Siniscalchi and C. H. Lee, “An end-to-end deep learning approach to simultaneous speech dereverberation and acoustic modeling for robust speech recognition,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 8, pp. 1289-1300, 2017.
    [38] Q. Song, J. C. Spall, Y. C. Soh and J. Ni, “Robust neural network tracking controller using simultaneous perturbation stochastic approximation,” IEEE Transactions on Neural Networks, vol. 19, no. 5, pp. 817-835, 2008.
    [39] C. F. Hsu, “Self-organizing adaptive fuzzy neural control for a class of nonlinear systems,” IEEE Transactions on Neural Networks, vol. 18, no. 4, pp. 1232-1241, 2007.
    [40] C. T. Lin, C. F. Juang and C. P. Li, “Temperature control with a neural fuzzy inference network,” IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol. 29, no. 3, pp. 440-451, 1999.
    [41] P. Z. Lin, C. F. Hsu, T. T.Lee and C. H. W, “Robust fuzzy-neural sliding-mode controller design via network structure adaptation,” IET Control Theory & Applications, vol. 2, no. 12, pp. 1054-1065, 2008.
    [42] J. Ji, S. Gao, J. Cheng, Z. Tang and Y. Todo, “An approximate logic neuron model with a dendritic structure,” Neurocomputing, vol. 173, pp. 1775-1783, 2016.
    [43] T. Zhou, S. Gao, J. Wang, C. Chu, Y. Todo and Z. Tang, “Financial time series prediction using a dendritic neuron model,” Knowl.-Based Syst, vol. 105, pp. 214-224, Aug. 2016.
    [44] W. Chen, J. Sun, S. Gao, J. J. Cheng, J. Wang and Y. Todo, “Using a single dendritic neuron to forecast tourist arrivals to Japan,” IEICE Trans. Inf. Syst, vol. E100-D, no. 1, pp. 190-202, 2017.
    [45] Z. Sha, L. Hu, Y. Todo, J. Ji, S. Gao and Z. Tang, “A breast cancer classifier using a neuron model with dendritic nonlinearity,” IEICE Trans. Inf. Syst, vol. E98-D, no. 7, pp. 1365-1376, 2015.
    [46] T. Jiang, S. Gao, D. Wang, J. Ji, Y. Todo and Z. Tang, “A neuron model with synaptic nonlinearities in a dendritic tree for liver disorders,” IEEJ Trans. Elect. Electron. Eng, vol. 12, no. 1, pp. 105-115, 2017.
    [47] A. Rodriguez-Angeles and H. Nijmeijer, “Mutual synchronization of robots via estimated state feedback: a cooperative approach,” IEEE Trans. Control Syst. Technol, vol. 12, no. 4, pp. 542-554, Jul. 2004.
    [48] M. T. Yan, M. H. Lee and P. L. Yen, “Theory and application of a combined self-tuning adaptive control and cross coupling control in a retrofit milling machine,” Mechatronics, vol. 15, no. 2, pp. 193-211, 2005.
    [49] F. J. Lin, P. H. Chou, C. S. Chen and Y. S. Lin, “DSP-based cross-coupled synchronous control for dual linear motors via intelligent complementary sliding mode control,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 1061-1073, 2012.
    [50] F. J. Lin, P. H. Chou, C. S. Chen and Y. S. Lin, “Three-degree-of-freedom dynamic model-based intelligent nonsingular terminal sliding mode control for a gantry position stage,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 5, pp. 971-985, 2012.
    [51] R. Hellinger and P. Mnich, “Linear motor-powered transportation: history, present status, and future outlook,” Proceedings of the IEEE, vol. 97, no. 11, pp. 1892-1900, 2009.
    [52] D. Renton and M. A. Elbestawi, “Motion control for linear motor feed drives in advanced machine tools,” International Journal of Machine Tools and Manufacture, no. 4, pp. 479-507, 2001.
    [53] 桂人傑,高速主軸馬達與線型馬達技術研討會講義,高速主軸馬達與線型馬達技術研討會,新竹臺灣,2003年,第67頁。
    [54] copley controls ,http://www.copleycontrols.com
    [55] ecauk ,https://ecauk.com/products/pci-1724u/
    [56] Advantech ,https://www.advantech.tw/products/
    [57] SCIENTISTS ,https://askthescientists.com/zh-hant/neuroscience/
    [58] W. R. Taylor, S. He, W. R. Levick and D. I. Vaney, “Dendritic computation of direction selectivity by retinal ganglion cells,” Science, vol. 289, no. 5488, pp. 2347-2350, 2000.
    [59] I. Segev, “Sound grounds for computing dendrites,” Nature, pp. 207-208, 1998.
    [60] L. Luo,and D. D.O'Leary, “Axon retraction and degeneration in development and disease,” Annu. Rev. Neurosci, vol. 28, pp. 127-156, 2005.
    [61] L. K. Low,and H. J. Cheng, “Axon pruning: an essential step underlying the developmental plasticity of neuronal connections,” Philos Trans R Soc Lond B Biol Sci, vol. 361, no.1473 , pp. 1531-1544, 2006.
    [62] T. Kanamori, M. I. Kanai, Y. Dairyo, K. I. Yasunaga, R. K. Morikawa and K. Emoto, “Compartmentalized calcium transients trigger dendrite pruning in Drosophila sensory neurons,” Science, vol. 340, no.6139 , pp. 1475-1478, 2013.
    [63] F. J. Lin, R. J. Wai, K. K. Shyu and T. M. Liu, “Recurrent fuzzy neural network control for piezoelectric ceramic linear ultrasonic motor drive,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 4, pp. 900-913, 2001.
    [64] F. J. Lin, S. Y. Chen, L. T. Teng and H. Chu, “Recurrent functional-link-based fuzzy neural network controller with improved particle swarm optimization for a linear synchronous motor drive,” IEEE Trans. Magnetics, vol. 45, no. 8, pp. 3151-3165, 2009.
    [65] 劉東昇,“龍門式定位平台之同動控制系統設計與實現”,國立臺灣師範大學電機工程學系,碩士論文,2015年六月。
    [66] 沈柏宏,“以數位訊號處理器為基礎之智慧型控制雙軸運動控制系統”,國立東華大學電機工程學系,博士論文,2006年六月。
    [67] C. S. Teo, K. K. Tan, S. Y. Lim, S. Huang and E. B. Tay, “Dynamic modeling and adaptive control of a H-type gantry stage,” Mechatronics, vol. 17, no. 7, pp. 361-367, 2007.
    [68] 李東鴻,“基於智慧型倒階同動控制之三軸龍門式定位平台”,國立臺灣師範大學電機工程學系,碩士論文,2016年六月。
    [69] C. S. Teo, K. K. Tan, S. Huang and S. Y. Lim, “Dynamic modeling and adaptive control of a multi-axial gantry stage,” International Conference on Systems, Man and Cybernetics, pp.3374–3379, 2005.
    [70] F. J. Lin, P. H. Chou, C. S. Chen and Y. S. Lin, “Three-degree-of-freedom dynamic model-based intelligent nonsingular terminal sliding mode control for a gantry position stage,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 5, pp. 971-985, 2012.
    [71] H. Yu, Y. Jing and S. Zhang, “Complexity explosion problem analysis and development in back-stepping method,” Chinese Control and Decision Conference, Yinchuan, China, 2016.
    [72] L. Xiaoying, W. Limei and S. Yibiao, “Dynamic surface backstepping sliding mode position control of permanent magnet linear synchronous motor,” IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 2017.
    [73] C. Li, W. Cui, D. Yan and C. Wang, “Adaptive dynamic surface control of flexible-joint robot with parametric uncertainties,” Transactions on Mechanical Engineering, vol. 26, no. 5, pp. 2749-2759, 2019.
    [74] S. L. H and J. M. Lee, “Adaptive dynamic surface control with sliding mode control and RWNN for robust positioning of a linear motion stage,” Mechatronics, vol. 222, no. 2, pp. 222-238, 2012.
    [75] K. S. Miller and B. Ross, “An introduction to the fractional calculus and fractional differential equations,” John Wiley & Sons, 1993.
    [76] Y. Chen, I. Petras, D. Xue, “Fractional-order control - a tutorial,” In Proc. 2009 American Control Conference, St. Louis, MO, USA, Jun. 10-12, 2009.
    [77] I. Podlubny, “Fractional Differential Equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications,” Mathematics in Science and Engineering, vol. 198, 1999.
    [78] S. Y. Chen and C. S. Chia, “Design of intelligent fractional order PID control for a linear voice coil motor using adaptive differential evolution,” in Proc. of the 2016 International Conference on Innovation, Communication and Engineering, Xi'an, Shaanxi, China, Nov. 15-18, 2016.
    [79] S. Y. Chen, C. H. Chang, and T. S. Liu, “Position tracking control of ironless permanent magnet linear synchronous motor using fractional-integral sliding-mode control,” 1st International Conference on Smart Machine and Intelligent Manufacturing, Yunlin, Taiwan, Nov. 24-26, 2017.
    [80] L. Barhoumi, H. Bemri and D. Soudani, “Discretization of uncertain linears systems with time delay via Euler’s and Tustin’s approximations,” IEEE Conference Control Engineering & Information Technology, pp. 1-6, 2016.
    [81] C. A. Monje, Y. Chen, B. M. Vingre, D. Xue and V. Feliu, “ Fractional-order systems and controls fundamentals and applications,” Springer, 2010.
    [82] C. F. H, T. T. Lee and K. Tanaka, “Intelligent nonsingular terminal sliding-mode control via perturbed fuzzy neural network,” Engineering Applications of Artificial Intelligence, vol. 45, pp. 339-349, 2015.

    無法下載圖示 電子全文延後公開
    2025/08/21
    QR CODE