簡易檢索 / 詳目顯示

研究生: 李文瓏
Li, Wun-Long
論文名稱: 使用邏輯演繹序列串聯質譜法鑑定洋蔥中的果寡醣結構
Application of Logically Derived Sequence Tandem Mass Spectrometry for Structure Elucidation of Fructooligosaccharides in Onions
指導教授: 倪其焜
Ni, Chi-Kung
陳頌方
Chen, Sung-Fang
口試委員: 倪其焜
Ni, Chi-Kung
陳頌方
Chen, Sung-Fang
呂廷璋
Lu, Ting-Jang
口試日期: 2025/03/12
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 69
中文關鍵詞: 果寡醣寡醣結構鑑定邏輯演繹序列串聯質譜法寡醣水解洋蔥
英文關鍵詞: fructooligosaccharides, oligosaccharides, structure elucidation, LODES/MSn, hydrolysis of oligosaccharides, onions
DOI URL: http://doi.org/10.6345/NTNU202500467
論文種類: 學術論文
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract ii 表次 iii 目次 iv 圖次 vi 第一章 緒論 1 1.1 寡醣簡介 1 1.2 果聚醣和果寡醣 2 1.3 果寡醣命名 3 1.4 果寡醣鑑定方法 4 1.5 洋蔥中的果寡醣 5 1.6 研究動機與目的 6 第二章 實驗材料與方法 8 2.1 實驗藥品與材料 8 2.2 實驗儀器與設備 8 2.3 實驗流程 9 2.4 洋蔥寡醣分子萃取與乙醇沉澱 10 2.5 固相萃取 10 2.6 高效能液相層析 11 2.7 質譜儀 13 第三章 邏輯演繹序列串聯質譜法 15 3.1 鈉離子加成寡醣在CID解離機制 15 3.2 應用於果寡醣三醣 20 3.3 區分醛己醣和酮己醣 22 第四章 實驗結果與討論 24 4.1 建立雙醣資料庫 25 4.1.1 與購買的雙醣標準品比對結果 25 4.1.2 與購買的三醣標準品比對結果 27 4.1.3 酵素水解生成inulobiose 30 4.1.4 Inulobiose收集與鑑定 32 4.1.5 Neokestose與blastose收集與鑑定 35 4.2 四醣分析與鑑定 44 4.2.1 與購買的四醣標準品比對結果 44 4.2.2 分離四醣異構物 45 4.2.3 果寡醣四醣1&6G-KT結構鑑定 47 4.2.4 果寡醣四醣6G,1-KT結構鑑定 52 4.2.5 果寡醣四醣6G,6-KT結構鑑定 56 4.3 與其他植物萃取樣品比較 61 4.4 洋蔥中雙醣、三醣、四醣結構鑑定結果 63 第五章 結論 64 參考文獻 65

    Kurzyna-Szklarek, M., Cybulska, J., & Zdunek, A. (2022). Analysis of the chemical composition of natural carbohydrates–an overview of methods. Food Chemistry, 394, 133466.
    Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N., Prestegard, J. H., Schnaar, R. L., & Seeberger, P. H. (2022). Essentials of Glycobiology. Cold Spring Harbor Laboratory Press.
    Belorkar, S. A., & Gupta, A. K. (2016). Oligosaccharides: a boon from nature's desk. AMB Express, 6(1), 82.
    Wardman, J. F., Bains, R. K., Rahfeld, P., & Withers, S. G. (2022). Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nature Reviews Microbiology, 20(9), 542-556.
    Spencer, C. N., McQuade, J. L., Gopalakrishnan, V., McCulloch, J. A., Vetizou, M., Cogdill, A. P., ... & Wargo, J. A. (2021). Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science, 374(6575), 1632-1640.
    Amicucci, M. J., Nandita, E., & Lebrilla, C. B. (2019). Function without structures: the need for in-depth analysis of dietary carbohydrates. Journal of Agricultural and Food Chemistry, 67(16), 4418-4424.
    Versluys, M., Kirtel, O., Toksoy Öner, E., & Van den Ende, W. (2018). The fructan syndrome: Evolutionary aspects and common themes among plants and microbes. Plant, Cell & Environment, 41(1), 16-38.
    Van den Ende, W., & Toksoy Öner, E. (2023). The Book of Fructans. Academic Press.
    Ritsema, T., & Smeekens, S. (2003). Fructans: beneficial for plants and humans. Current Opinion in Plant Biology, 6(3), 223-230.
    Noël, G. M., & Pontis, H. G. (2000). Involvement of sucrose synthase in sucrose synthesis during mobilization of fructans in dormant Jerusalem artichoke tubers. Plant Science, 159(2), 191-195.
    Vereyken, I. J., Chupin, V., Hoekstra, F. A., Smeekens, S. C., & de Kruijff, B. (2003). The effect of fructan on membrane lipid organization and dynamics in the dry state. Biophysical Journal, 84(6), 3759-3766.
    Hincha, D. K., Rennecke, P., & Oliver, A. E. (2008). Protection of liposomes against fusion during drying by oligosaccharides is not predicted by the calorimetric glass transition temperatures of the dry sugars. European Biophysics Journal, 37, 503-508.
    Cimini, S., Locato, V., Vergauwen, R., Paradiso, A., Cecchini, C., Vandenpoel, L., Verspreet, J., Courtin, C. M., D'Egidio, M. G., Van den Ende, W., & De Gara, L. (2015). Fructan biosynthesis and degradation as part of plant metabolism controlling sugar fluxes during durum wheat kernel maturation. Frontiers in Plant Science, 6, 89.
    Márquez-López, R. E., Uc-Chuc, M. A., Loyola-Vargas, V. M., Santiago-García, P. A., & López, M. G. (2023). Fructosyltransferases in plants: Structure, function and application: A review. Carbohydrate Polymer Technologies and Applications, 6, 100343.
    Suzuki, M., & Chatterton, N. J. (1993). Science and Technology of Fructans. CRC Press.
    Liu, Y., Huang, Y., Zhu, R., Farag, M. A., Capanoglu, E., & Zhao, C. (2023). Structural elucidation approaches in carbohydrates: A comprehensive review on techniques and future trends. Food Chemistry, 400, 134118.
    Gray, C. J., Migas, L. G., Barran, P. E., Pagel, K., Seeberger, P. H., Eyers, C. E., ... & Flitsch, S. L. (2019). Advancing solutions to the carbohydrate sequencing challenge. Journal of the American Chemical Society, 141(37), 14463-14479.
    Matros, A., Peukert, M., Lahnstein, J., Seiffert, U., & Burton, R. (2019). Determination of fructans in plants: Current analytical means for extraction, detection, and quantification. Annual Plant Reviews Online, 2, 1-39.
    Biesiekierski, J. R., Rosella, O., Rose, R., Liels, K., Barrett, J. S., Shepherd, S. J., ... & Muir, J. G. (2011). Quantification of fructans, galacto‐oligosacharides and other short‐chain carbohydrates in processed grains and cereals. Journal of Human Nutrition and Dietetics, 24(2), 154-176.
    Benkeblia, N. (2013). Fructooligosaccharides and fructans analysis in plants and food crops. Journal of Chromatography A, 1313, 54-61.
    Agopian, R. G. D., Soares, C. A., Purgatto, E., Cordenunsi, B. R., & Lajolo, F. M. (2008). Identification of fructooligosaccharides in different banana cultivars. Journal of Agricultural and Food Chemistry, 56(9), 3305-3310.
    Ruiz-Matute, A. I., Hernández-Hernández, O., Rodríguez-Sánchez, S., Sanz, M. L., & Martínez-Castro, I. (2011). Derivatization of carbohydrates for GC and GC–MS analyses. Journal of Chromatography B, 879(17-18), 1226-1240.
    Cerantola, S., Kervarec, N., Pichon, R., Magné, C., Bessieres, M. A., & Deslandes, E. (2004). NMR characterisation of inulin-type fructooligosaccharides as the major water-soluble carbohydrates from Matricaria maritima (L.). Carbohydrate Research, 339(14), 2445-2449.
    Matulová, M., Husárová, S., Capek, P., Sancelme, M., & Delort, A. M. (2011). NMR structural study of fructans produced by Bacillus sp. 3B6, bacterium isolated in cloud water. Carbohydrate Research, 346(4), 501-507.
    Benkeblia, N. (2023). Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry metabolomics platforms: tools for plant oligosaccharides analysis. Carbohydrate Polymer Technologies and Applications, 5, 100304.
    Verspreet, J., Holmgaard Hansen, A., Dornez, E., Courtin, C. M., & Harrison, S. J. (2014). A new high-throughput LC-MS method for the analysis of complex fructan mixtures. Analytical and bioanalytical chemistry, 406, 4785-4788.
    Ehlers Cheang, S., Jiang, J., Suarez, C., Weng, C. Y., Couture, G., Bacalzo Jr, N. P., ... & Lebrilla, C. B. (2024). Combined alcohol soluble carbohydrate determination (CASCADE) of food. ACS Food Science & Technology, 4(3), 554-560.
    Shiomi, N., Onodera, S., Chatterton, N. J., & Harrison, P. A. (1991). Separation of fructooligosaccharide isomers by anion-exchange chromatography. Agricultural and Biological Chemistry, 55(5), 1427-1428.
    Fujishima, M., Furuyama, K., Ishihiro, Y., Onodera, S., Fukushi, E., Benkeblia, N., & Shiomi, N. (2009). Isolation and structural analysis in vivo of newly synthesized fructooligosaccharides in onion bulbs tissues (Allium cepa L.) during storage. International Journal of Carbohydrate Chemistry, 2009(1), 493737.
    Downes, K., & Terry, L. A. (2010). A new acetonitrile-free mobile phase method for LC–ELSD quantification of fructooligosaccharides in onion (Allium cepa L.). Talanta, 82(1), 118-124.
    Pöhnl, T., Böttcher, C., Schulz, H., Stürtz, M., Widder, S., Carle, R., & Schweiggert, R. M. (2017). Comparison of high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and ultra-high performance liquid chromatography with evaporative light scattering (UHPLC-ELSD) for the analyses of fructooligosaccharides in onion (Allium cepa L.). Journal of Food Composition and Analysis, 63, 148-156.
    Verspreet, J., Hansen, A. H., Harrison, S. J., Vergauwen, R., Van den Ende, W., & Courtin, C. M. (2017). Building a fructan LC–MS2 library and its application to reveal the fine structure of cereal grain fructans. Carbohydrate Polymers, 174, 343-351.
    Badawy, M. E., El-Nouby, M. A., Kimani, P. K., Lim, L. W., & Rabea, E. I. (2022). A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Analytical Sciences, 38(12), 1457-1487.
    Valk-Weeber, R. L., Dijkhuizen, L., & van Leeuwen, S. S. (2019). Large-scale quantitative isolation of pure protein N-linked glycans. Carbohydrate research, 479, 13-22.
    Swartz, M. E. (2005). UPLC™: an introduction and review. Journal of Liquid Chromatography & Related Technologies, 28(7-8), 1253-12
    Tolstikov, V. V., & Fiehn, O. (2002). Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Analytical Biochemistry, 301(2), 298-307..
    Russo, M., Camillo, M. R. T., La Tella, R., Rigano, F., Donato, P., Mondello, L., & Dugo, P. (2024). Principles and applications of porous graphitic carbon stationary phase in liquid chromatography: An update. Journal of Chromatography A, 1719, 464728.
    Banerjee, S., & Mazumdar, S. (2012). Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. International journal of analytical chemistry, 2012(1), 282574.
    Indelicato, S., Bongiorno, D., & Ceraulo, L. (2021). Recent approaches for chemical speciation and analysis by electrospray ionization (esi) mass spectrometry. Frontiers in Chemistry, 8, 625945.
    Nolting, D., Malek, R., & Makarov, A. (2019). Ion traps in modern mass spectrometry. Mass spectrometry reviews, 38(2), 150-168.
    Suarez, C., Cheang, S. E., Larke, J. A., Jiang, J., Weng, C. Y. C., Stacy, A., ... & Lebrilla, C. B. (2025). Development of a comprehensive food glycomic database and its application: Associations between dietary carbohydrates and insulin resistance. Food Chemistry, 142977.
    Wang, J., Zhao, J., Nie, S., Xie, M., & Li, S. (2021). Mass spectrometry for structural elucidation and sequencing of carbohydrates. TrAC Trends in Analytical Chemistry, 144, 116436.
    Grabarics, M., Lettow, M., Kirschbaum, C., Greis, K., Manz, C., & Pagel, K. (2021). Mass spectrometry-based techniques to elucidate the sugar code. Chemical Reviews, 122(8), 7840-7908.
    Hsu, H. C., Liew, C. Y., Huang, S. P., Tsai, S. T., & Ni, C. K. (2018). Simple method for de novo structural determination of underivatised glucose oligosaccharides. Scientific Reports, 8(1), 5562.
    Tsai, S. T., Liew, C. Y., Hsu, C., Huang, S. P., Weng, W. C., Kuo, Y. H., & Ni, C. K. (2019). Automatic full glycan structural determination through logically derived sequence tandem mass spectrometry. ChemBioChem, 20(18), 2351-2359.
    Liew, C. Y., Yen, C. C., Chen, J. L., Tsai, S. T., Pawar, S., Wu, C. Y., & Ni, C. K. (2021). Structural identification of N-glycan isomers using logically derived sequence tandem mass spectrometry. Communications Chemistry, 4(1), 92.
    Weng, W. C., Liao, H. E., Huang, S. P., Tsai, S. T., Hsu, H. C., Liew, C. Y., ... & Ni, C. K. (2022). Unusual free oligosaccharides in human bovine and caprine milk. Scientific Reports, 12(1), 10790.
    Huynh, H. T., Phan, H. T., Hsu, P. J., Chen, J. L., Nguan, H. S., Tsai, S. T., ... & Kuo, J. L. (2018). Collision-induced dissociation of sodiated glucose, galactose, and mannose, and the identification of anomeric configurations. Physical Chemistry Chemical Physics, 20(29), 19614-19624.
    Tsai, S. T., & Ni, C. K. (2022). Differentiation of aldohexoses and ketohexoses through collision‐induced dissociation. Journal of the Chinese Chemical Society, 69(1), 173-183.
    Huynh, H. T., Tsai, S. T., Hsu, P. J., Biswas, A., Phan, H. T., Kuo, J. L., ... & Chiu, C. C. (2022). Collision-induced dissociation of Na+-tagged ketohexoses: experimental and computational studies on fructose. Physical Chemistry Chemical Physics, 24(35), 20856-20866.
    Liew, C. Y., Li, W. L., & Ni, C. K. (2024). Structural determination of fructooligosaccharides and raffinose family oligosaccharides using logically derived sequence tandem mass spectrometry. Analyst, 149(23), 5714-5727.
    Zhang, L., Zhao, C., Zhu, D., Ohta, Y., & Wang, Y. (2004). Purification and characterization of inulinase from Aspergillus niger AF10 expressed in Pichia pastoris. Protein Expression and Purification, 35(2), 272-275.
    Miłek, J. (2022). Application of the new method to determine the activation energies and optimum temperatures of inulin hydrolysis by exo-inulinases Aspergillus niger. Journal of Thermal Analysis and Calorimetry, 1-7.
    Benkeblia, N., Onodera, S., & Shiomi, N. (2004). Effect of gamma irradiation and temperature on fructans (fructo-oligosaccharides) of stored onion bulbs Allium cepa L. Food Chemistry, 87(3), 377-382.
    Guo, J., Shen, S., Xing, S., Yu, H., & Huan, T. (2021). ISFrag: De novo recognition of in-source fragments for liquid chromatography–mass spectrometry data. Analytical Chemistry, 93(29), 10243-10250.

    無法下載圖示 電子全文延後公開
    2027/03/13
    QR CODE