研究生: |
許殷瑋 |
---|---|
論文名稱: |
台灣中部埔里鯉魚潭湖芯之生地化指標與晚全新世之古氣候環境變遷 |
指導教授: | 余英芬 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 埔里鯉魚潭 、碳氮元素及同位素紀錄 、生地化指標 、全新世古氣候 |
論文種類: | 學術論文 |
相關次數: | 點閱:158 下載:28 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
湖泊岩芯LYT-C為中央研究院主題計畫「亞洲古環境變遷計畫」之研究團隊於2002年在台灣中部中海拔的埔里鯉魚潭鑽取所獲得。本研究測量LYT-C湖芯的有機質含量與特性,包含有機質(含有機碳、氮、硫元素及生物源蛋白石)含量,有機碳、氮同位素值以及生物指標(biomarker)中正烷類等生地化指標,藉以探討鯉魚潭湖泊高時間解析度的湖泊沈積環境變遷,並進一步瞭解台灣晚全新世以來的環境與氣候變遷。
鯉魚潭LYT-C湖芯之時間架構主要以AMS-14C之定年結果以及地磁場強度之對比所獲得之定年架構。LYT-C全長1960公分,涵蓋了一萬年以來的記錄。整段湖芯之沉積速率為0.18公分/年,而其中深度207公分到413公分相對於其他段湖芯之沉積速率高,高達0.69公分/年,表示本段湖芯有較劇烈的沉積環境變化。
研究1960公分長的湖芯之有機碳含量變化顯示,於深度675公分之前的有機碳含量值極低,幾乎趨近於零,並對應岩心描述紀錄中土黃色之砂質層。而自從深度675公分以來有機碳含量明顯有所增加,並隨著深度有明顯之層狀沉積構造,而此現象在總硫、總氮含量以及生物源蛋白石的變動剖面亦呈現相同的趨勢。由於此些標本中生地化指標的特徵顯示其未受到明顯的分解作用,再配合各指標的特徵(含C/N比值,有機碳、氮同位素及生物指標等)推測湖中有機質含量之變動主要受到了陸地輸入無機物質之稀釋作用的影響。
本湖芯中有機質的C/N比值在深度675公分以來的變化範圍大致在10~30之間,平均值為16.8;有機質碳同位素值自深度650公分以來的變化範圍在-29.4‰~-18.8‰之間。有機質的C/N比值與碳同位素值的變動特徵反映了鯉魚潭湖中之有機質來源主要來自於水生藻類與陸地植物的比值以及湖圍陸生植物中C3植物和C4植物之間的變動。氮同位素變動範圍在-0.67‰~4.32‰之間;其變動主要受到湖泊環境的變動以及有機質來源的改變所影響。正烷烴(n-alkane)含量分析顯示此湖泊之有機物來源以湖旁的陸地植物輸入為主,且在沉降過程中並無明顯的分解作用產生,亦無過老的有機碳輸入。
配合磁性參數之變動,LYT-C湖芯之生地化指標可以重建鯉魚潭當地近3000年晚全新世之沉積歷史,並進一步解析當地古氣候的變動。在約2650年前因氣候較為乾燥,河流下游遭阻塞進而成為一之淺水湖泊,而自約1620年前以來淺水湖泊的水位持續上升,到了約1580年前水位上漲,且自約1580年前以來湖泊沉積環境因為湖水面變化而致使湖積大小的變動而使沉積物中有機質等生地化指標顯現受到湖圍陸源物質不同程度的稀釋作用,因此反映了當地不同的氣候意義。由本論文研究之各項生地化指標分析所推測的氣候變動結果在LYT-C湖芯的孢粉記錄(張秋蓮,2006)有相同的推測,並與台灣各地之古氣候變動大致趨勢吻合。
鯉魚潭另ㄧ短湖芯LYT-3A由於其標本分析間距較密集,所以提供了近1300年以來更高時間解析度之古氣候變動的記錄。由此建立之古氣候記錄與東亞古氣候的季風紀錄有很好的連比性,且與太陽輻射強度的變動關連,此說明對鯉魚潭古氣候影響甚劇之東亞夏季季風可能主要受控於太陽輻射之強弱。
「中文部分」(依姓名筆劃排列)
石璋如與劉益昌,1987,大馬璘。中央研究院歷史語言研究所,專刊八十九。
李日平、方國祥及黃光慶,1992,珠江三角洲全新世氣候變化。中國全新世大暖期氣候與環境,海洋出版社,100-110頁。
李政益,2004,恆春半島東源谷地3000年來的沉積物孢粉分析。國立臺灣大學地質科學研究所碩士論文,共51頁。
林淑芬、劉平妹與賴慈華,1994,由武淵井的孢粉紀錄推估宜蘭平原晚全新世的濕潤期及其古季風意義。經濟部中央地質調查所彙刊第十七號,107-128頁。
林義棟,1996,台南縣宅港及三寮灣鑽探岩芯沉積環境分析。國立成功大學地球科學研究所碩士論文,共120頁。
林淑芬,2004,由孢粉記錄看宜蘭平原最近4200年來的自然環境演變及其與史前文化發展之關係。國立臺灣大學地質科學研究所博士論文,共189頁。
郭兆敏,1994,頭社盆地一萬餘年來湖泊沈積物之花粉分析。國立臺灣大學地質科學研究所碩士論文,共82頁。
陳鎮東,1994,海洋化學。國立編譯館主編,共551頁。
陳鎮東與王冰潔,1997,臺灣的湖泊與水庫。國立編譯館主編,共504頁。
陳鎮東、羅建育、藍信企與徐翩,1999,臺灣全新世大暖期之探討。東亞古季風與變遷機制研討會論文摘要,59-63頁。
陳炳誠,2003,埔里與魚池盆地之沉積與新構造研究。國立臺灣大學地質科學研究所碩士論文,共97頁。
張豐穎、高樹基與劉康克,1991,沉積物含碳量分析法之探討。臺灣大學海洋學刊,第二十七期,140-150頁。
張秋蓮,2006,南投埔里鯉魚潭自2600年前以來沈積物的孢粉分析。國立臺灣大學地質科學研究所碩士論文,共89頁。
陸挽中,1996,日月潭盆地上次冰盛期以來之湖泊沈積物孢粉分析。國立臺灣大學地質科學研究所碩士論文,共105頁。
黃亦錫,2003,埔里酒廠產業與地方觀光發展之關聯。私立世新大學觀光研究所碩士論文,共136頁。
黃瓊儀,2004,班達海域過去25萬年以來表層海水營養鹽利用率之重建:MD012380岩芯之氮同位素紀錄。國立台灣師範大學地球科學研究所碩士論文,共77頁。
黃鎮國、李平日、張仲英、李孔宏及喬彭年,1982,珠江三角洲形成發育演變。科普出版社廣州分社出版,108-115頁。
黃鑑水、謝凱旋及陳勉銘,2001,五萬分之ㄧ台灣地質圖幅說明書,圖幅第三十二號,埔里。經濟部中央地質調查所。
劉枝萬,1951,臺灣埔里鄉土志稿。
劉金陵,1992,我國長白山西部地區全新世高溫期。中國全新世大暖期氣候與環境,海洋出版社,25-32頁。
劉紹民,1996,台灣的氣象與氣候。常民文化出版,共366頁。
劉益昌,2006a,我們在不同的時間走過。科學人雜誌特刊四號-多樣性台灣,114-117頁。
劉益昌,2006b,相逢水沙連-族群關係與演變。第六屆新台灣史研習營。
錢憲和,2001,地質學。地球科學基金會,共786頁。
羅建育,1996,台灣高山湖泊沉積物之元素分佈與古氣候。國立中山大學地質研究所博士論文,共194頁。
「英文部分」(依字母順序排列)
An, Z. (2000) The history and variability of the East Asian Paleomonsoon climate. Quat. Sci. Rev., 19: 171-187.
An, Z., S. C. Porter, J. E. Kutzbach, X. Wu, S. Wang, X. Liu, X. Li, and W. Zhou (2000) Asynchronous Holocene optimum of the East Asian monsoon. Quat. Sci. Rev., 19: 743-762.
Baier, J., A. Lücke, J. F. W. Negendank, G. -H. Schleser, and B. Zolitschka (2004) Diatom and geochemical evidence of mid- to late Holocene climatic changes at Lake Holzmaar, West-Elifel. Quat. Int., 113: 81-96.
Bernasoni, S. M., A. B. Barbieri, and M. Simona (1997) Carbon and nitrogen isotope variations in sedimenting organic matter in Lake Lugano. Limnol. Oceanogr. 42: 1755-1765.
Beuning, K. R. M., M. R. Talbot, and K. Kelts (1997) A revised 30,000-year paleoclimatic and paleohydrologic history of Lake Albert, East Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol., 136: 259-279.
Brassell, S. C., G. Eglinton, J. R. Maxwell, and R. P. Philp (1978) Natural backg- round of alkanes in the aquatic environment. In: Aquatic Pollutants, Edited by O. Hutzinger, I. H. Van Lelyveld, and B. C. J. Zoeteman, Pergamon Press, Oxford, pp. 659- 667.
Bremner, J. M (1965) Inorganic forms of nitrogen. In: Methods of soil Analysis, Part 2. Edited by C. A. Black, American Society of Agronomy, Wisconsin, pp. 1238-1255.
Christensen, J. Q. and S. Björck (2001) Digital sediment colour analyses, DSCA, of lake sediments – pitfalls and potentials. J. Paleolimnol., 25: 531-538.
Conley, D. J. (2001) Biogenic silica. In: Tracking Environmental Change Using Lake Sediments. Vol. 3, Edited by W. M. Last, J.P. Smol, Kluwer Academic Publishers Press, pp. 281-293.
Dalton, C., H. J. B. Birks, S. J. Brooks, N. G. Cameron, R. P. Evershed, S. M. Peglar, J. A. Scott, and R. Thompson (2005) A multi-proxy study of lake- development in response to catchment changes during the Holocene at Lochnagar, north-east Scotland. Palaeogeogr. Palaeoclimatol. Palaeoecol., 221: 175-201.
Dansgaard, W., S. J. Johnsen, H. B. Clausen, D. Dahl-Jensen, N. S. Gundestrup, C. U. Hammer, C. S. Hvidberg, J. P. Steffensen, A. E. Sveinbjörnsdottir, J. Jouzel, and G. Bond (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364: 218- 220.
Fuhrmanna, A., J. Mingram, A. Lucke, H. Lu, B. Horsfield, J. Liu, J. F. W. Negendank, G. H. Schleser, and H. Wilkes (2003) Variations in organic matter composition in sediments from Lake Huguang Maar (Huguangyan), south China during the last 68 ka: implications for environmental and climatic change. Org. Geochem., 34: 1497-1515.
Glew, J. R., J. P. Smol, and W. M. Last (2001) Sediment core collection and extrusion. In: Tracking Environmental Change Using Lake Sediments. Vol. 1, Edited by W. M. Last, J.P. Smol, Kluwer Academic Publishers Press, pp. 73-105.
Hassan, K. M., J. B. Swinehart, and R. F. Spalding (1997) Evidence for Holocene environmental change from C/N ratios, and δ13C and δ15N values in Swan Lake sediments. western Sand Hills, Nebraska. J. Paleolimnol., 18: 121–130.
Herczeg, A. L., A. K. Smith, and J. C. Dighton (2001) A 120 year record of changes in nitrogen and carbon cycling in Lake Alexandrina, South Australia: C:N, δ15N and δ13C in sediments. Appl. Geochem., 16: 73-84.
Intergovernmental Panel On Climate Change (2007) Climate Change 2007: The Physical Science Basis. IPCC WGI Fourth Assessment Report.
Ku, H. W., Y. G. Chen, and T. K. Liu (2005) Environmental Change in the Southwestern Coastal Plain of Taiwan Since Late Pleistocene: Using Multiple Proxies of Sedimentary Organic Matter. TAO, 16(5): 1079-1096.
Keeley, J. E. and D. R. Sandquist (1992) Carbon: freshwater plants. Plant Cell Environ., 15:1021-1035.
Lehmann M. F., S. M. Bernasconi, A. Barbieri, and J. A. McKenzie (2002) Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim. Cosmochim. Acta, 66(20): 3573-3584.
Libes, S. M. (1992) Reading the sedimentary record: the use of stable isotopes in the study of paleoceanography. In: An Introduction to Marine Biogeochemistry, Edited by S. M. Libes, John Wiley & Sons Inc., pp.581-589.
Liu, P. M. and S. Y. Huang (1994) A 5000-year pollen record from Chitsal lake, central Taiwan. TAO, 1.5(3): 411-419.
Lou, J. Y. and C. T. Chen (1997) Paleoclimatological records of the Great Ghost Lake in Taiwan. Sci. China Ser. D., 40: 284-292
Lücke, A., G. H. Schleser, B. Zolitschka, and J. F. W. Negendank (2003) A Lateglacial and Holocene organic carbon isotope record of lacustrine palaeoproductivity and climatic change derived from varved lake sediments of Lake Holzmaar, Germany. Quat. Sci. Rev., 22: 569-580.
Meyers, P.A. (1994) Preservation of elemental and isotope source identification of sedimentary organic matter during and after deposition. Chem. Geol., 144:289-302
Meyers, P. A. (1997) Early Holocene climatic instability in Japan: organic geochemical evidence in sediment cores from Lake Biwa, Lake Kizake and the Japan Sea. J. Asian Earth Sci., 16(1): 77-83.
Meyers, P. A. (2001) Sediment organic matter. In: Tracking Environmental Change Using Lake Sediments. Vol. 2, Edited by W. M. Last, and J.P. Smol, Kluwer Academic Publishers Press, pp. 239-269.
Meyers, P. A. (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org. Geochem., 34:261-289.
Mortlock, R. A. and P. N. Froelich (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res., 36: 1415-1426
Muller, A. and U. Mathesius (1999) The palaeoenvironments of coastal lagoons in the southern Baltic Sea, I. The application of sedimentary Corg/N ratios as source indicators of organic matter. Palaeogeogr. Palaeoclimatol. Palaeoecol., 145: 1-16.
Ostrom, N. E., D. T. Long, E. M. Bell, and T. Beals (1998) The origin and cycling of particulate and sedimentary organic matter and nitrate in Lake Superior. Chem. Geol., 152: 13-28.
Pack, S. M., G. H. Miller, M. L. Fogel, and N. A. Spooner (2003) Carbon isotopic evidence for increased aridity in northwestern Australia through the Quaternary. Quat. Sci. Rev., 22: 629-643.
Peters, K. E., C. C. Walters, and J. M. Moldowan (2005) Biomarkers in the rnvitonment. In: The Biomarker Guide – I. Biomarkers and Isotopes in the Environment and Human History, Edited by K. E. Peters, C. C. Walters, and J. M. Moldowan, Cambridge Press, pp. 294-296.
Ruddiman, W. F. and T. R. Janecek (1989) Pliocene-Pleistocene biogenic and terrigenous fluxes at equatorial atlantic site 662,663 and 664. Sci. Result, Vol.108, Proceedings of the Ocean Drilling Program, pp. 211-226.
Silliman, J. E. and C. L. Schelske (2003) Saturated hydrocarbons in the sediments of Lake Apopka, Florida. Org. Geochem., 34: 253-260.
Talbot, M. R. (2001) Nitrogen isotope in palaeolomnology. In: Tracking Environmental Change Using Lake Sediments. Vol. 2, Edited by W. M. Last, and J.P. Smol, Kluwer Academic Publishers Press, pp. 401-439.
Wada, E. (1980) Nitrogen isotope fractionation and its significance in biogeochemical process occurring in marine environments. In: Isotope Marine Chemistry. Edited by E. D. Goldberg, and Y. Horibe , Uchida Rokakuho press, pp.375-398.
Watanabe, Y., H. Naraoka, D. J. Wronkiewicz, K. C. Condie, and H. Ohmoto (1997) Carbon, nitrogen, and sulfur geochemistry of Archean and Proterozoic shales from the Kaapvaal Craton, South Africa. Geochim. Cosmochim. Acta, 61(16): 3441-3459.
Wang, B., S. C. Clemens, and P. Liu (2003) Contrasting the Indian and East Asian monsoons: implications on geologic timescales. Mar. Geol., 201: 5-21.
Wang, Y., H. Cheng, R. L. Edwards, Y. He, X. Kong, Z. An, J. Wu, M. J. Kelly, C. A. Dykoski, and X. Li (2005) The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science, 308: 854-857.
Wilkes, H., A. Ramrath, and J.F.W. Negendank (1999) Organic geochemical evidence for environmental changes since 34000 yrs BP from Lago di Mezzano, central Italy. J. Paleolimnol., 22: 349-365.
Wolfe, B. B., T. W. D. Edwards, and R. Aravena (1999) Changes in carbon and nitrogen cycling during tree-line retreat recorded in the isotopic content of lacu- strine organic matter, western Taimyr Peninsula, Russia. The Holocene., 9: 215-222.
Yang, B., A. Braeuning, K. R. Johnsonn, and Y. Shi (2002) General characteristics of temperature variation in China during the last two millennia. Geophys. Res. Lett., 29(9): 1-4.