簡易檢索 / 詳目顯示

研究生: 郭承典
Kuo, Chen-Tien
論文名稱: 純鈦與6061鋁合金摩擦攪拌異質接合之機械性質與抗腐蝕特性研究
Mechanical properties and corrosion resistance of dissimilar friction stir welded pure titanium and aluminum alloy 6061
指導教授: 程金保
Cheng, Chin-Pao
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 84
中文關鍵詞: 摩擦攪拌銲接6061鋁合金商業用純鈦異質接合殘留應力抗腐蝕性
英文關鍵詞: aluminum alloy 6061, commercially pure titanium, corrosion resistance
DOI URL: http://doi.org/10.6345/NTNU201901040
論文種類: 學術論文
相關次數: 點閱:159下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用摩擦攪拌銲接的技術搭配對接及搭接兩種方式用於純鈦與6061鋁合金之異質接合,摩擦攪拌銲接利用高速鋼作為攪拌棒,攪拌棒之傾斜角設定為2∘,探討在不同主軸轉速及進給速度下對於銲道性質之影響,將各成功接合之試片進行顯微組織及機械性質測試,並進行元素分布分析,最後進行殘留應力量測及抗腐蝕能力分析。
    實驗結果顯示對接時主軸轉速設定1000 rpm、進給速度100 mm/min可以得到較好的銲道性質;搭接時則是主軸轉速設定1200 rpm、進給速度120 mm/min可以得到較好的銲道性質,兩種接合方法比較時,對接比起搭接可以獲得更好的抗拉強度。除此之外,兩種銲接方式都在攪拌區可以觀察到晶粒細化的效果,但是熱影響區晶粒較大,使熱影響區有硬度下降的趨勢,造成對接試片會在熱影響區發生斷裂;在搭接時兩種材料界面會形成硬脆的介金屬化合物,其硬度將近300HV高於純鈦母材,由於硬度高、延性差因此搭接試片斷裂時會發生在接合界面處。進行殘留應力量測發現摩擦攪拌銲接試片與典型的對接殘留應力相反,在銲道處顯示為壓應力。銲接件抗腐蝕能力的部分,銲道的攪拌區由於晶粒細化的緣故,其抗腐蝕性能優於其他區域。

    In this study, the technology of friction stir welding was used to join the dissimilar materials of aluminum alloy 6061 and commercially pure titanium by means of butt joint and lap joint. High-speed steal stir rod was used for the friction stir welding, and a 2o title was applied to the stir rod during friction stir welding. To discuss the influence of different rotating speeds and travel speed, the specimens were analyzed for their microstructure, mechanical properties, and elemental analysis was carried out, finally the residual stress measurement and corrosion resistance analysis were performed followed by the friction stir welding.
    Experimental results showed that the best weld bead properties of the butt joint can be obtained by setting the rotational speed of 1000 rpm and the travel speed of 100 mm/min; and the best weld bead of the lap joint can be obtained by setting the rotational speed to 1200 rpm and the travel speed of 120 mm/min. When comparing the two joining methods, the butt joint has better tensile strength than the lap joint. In addition, the two welding methods can observe the effect of grain refinement in the stirring zone, but the grain in the heat-affected zone is larger, and the heat-affected zone has a tendency to decrease in hardness, causing failure in the heat-affected zone when using butt joint. As for the lap joint, the interface between the two materials will form intermetallic compounds, the hardness of which is nearly 300HV, higher than that of the pure titanium base material, and fractured at the interface, which was attributed to the presence of intermetallic compounds. The residual stress portion is opposite to the typical butt residual stress, showing compressive stress at the weld bead, which is good for the weld bead. In addition, the stir zone is superior to other regions in the corrosion resist test due to grain refinement.

    摘要 ii Abstract iii 目錄 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章 文獻探討 3 2.1 鈦合金特性 3 2.1.1 鈦合金簡介 3 2.1.2純鈦與鈦合金 4 2.1.3純鈦 5 2.1.4 鈦合金 6 2.2 鋁合金特性 7 2.2.1 鋁合金簡介 7 2.2.2鋁合金分類 8 2.4摩擦攪拌銲接 9 2.4.1摩擦攪拌銲接簡介 9 2.4.2摩擦攪拌銲接原理 10 2.4.3銲後組織特徵 11 2.5鈦的銲接 12 2.6摩擦攪拌異質接合 18 第三章 實驗方法與步驟 24 3.1 實驗流程 24 3.2 實驗材料 24 3.3 銲接製程參數 25 3.4 銲接特性分析 27 3.4.1 金相顯微組織觀察 27 3.4.2元素分析 28 3.4.3 微硬度試驗 30 3.4.4 拉伸試驗 31 3.4.5 殘留應力量測 32 3.4.6 電化學耐腐蝕性測試 35 第四章 結果與討論 37 4.1 銲道形貌以及金相顯微組織觀察 37 4.1.1 FSW對接銲道形貌 37 4.1.2 FSW搭接銲道形貌 44 4.2 銲道元素分析 49 4.2.1 FSW對接銲道元素分析 49 4.2.2 FSW搭接銲道元素分析 54 4.3 微硬度分析 58 4.3.1 FSW對接微硬度分析 59 4.3.2 FSW 搭接微硬度分析 61 4.4 拉伸試驗 65 4.4.1 FSW對接拉伸試驗 65 4.4.2 FSW搭接拉伸試驗 67 4.5 殘留應力 70 4.6 抗腐蝕性 73 第五章 結論 77 參考文獻 79

    1. D. Banerjee, A. L. Pilchak, J. C. Williams, Processing, structure, texture and microtexture in titanium alloys, Materials Science Forum, 710, 2012, 66-84.
    2. M. Yamada, An overview on the development of titanium alloys for non-aerospace application in Japan, Materials Science and Engineering: A, 213(1–2), 1996, 8-15.
    3. M. T. Pham, I. Tsyganov, W. Matz, H. Reuther, S. Oswald, E. Richter, E. Wieser, Corrosion behavior and microstructure of titanium implanted with α and β stabilizing elements, Thin Solid Films, 310(1), 1997, 251-259.
    4. K. Yaya, Y. Khelfaoui, B. Malki, M. Kerkar, Numerical simulations study of the localized corrosion resistance of AISI 316L stainless steel and pure titanium in a simulated body fluid environment, Corrosion Science, 53(10), 2011, 3309-3314.
    5. T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminum alloys, Materials and Design, 56, 2014, 862–871.
    6. S. Chen, L. Li, Y. Chen, J. Huang, Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process, Journal of Alloys and Compounds, 509, 2011, 891–898.
    7. S. Guo, Y. Peng, C. Cui, Q. Gao, Q. Zhou, J. Zhu, Microstructure and mechanical characterization of re-melted Ti-6Al-4V and Al-Mg-Si alloys butt weld, Vacuum, 154, 2018, 58–67.
    8. Y.N. Zhang, X. Cao, S. Larose, P. Wanjara, Review of tools for friction stir welding and processing, Canadian Metallurgical Quarterly, 51(3), 2012, 250-261.
    9. W. Yao, A. P. Wu, G. S. Zou, J. Ren, Structure and forming process of the Ti/Al diffusion bonding joints, Rare Metal Materials and Engineering, 36(4), 2007, 700-704.
    10. H. G. Dong, Z. G. Yan, Z. R. Wang, D. W. Deng, C. Dong, Vacuum brazing TC4 titanium alloy to 304 stainless steel with Cu-Ti-Ni-Zr-V amorphous alloy foil,  Journal of Materials Engineering and Performance, 23(10), 2014, 3770-3776.
    11. V.D. Saprygin, Pressure welding of aluminium–steel and titanium–aluminium transition pieces for low-temperature service, Weld Prod, 22, 1975, 29-31.
    12. M. Pourali, A. Abdollah-zadeh, T. Saeid, F. Kargar, Influence of welding parameters on intermetallic compounds formation in dissimilar steel/aluminum friction stir welds, Journal of Alloys and Compounds, 715, 2017, 1-8.
    13. 馬濟民,賀金宇,龐克昌,莫畏,鈦鑄錠和鍛造,冶金工業出版社,2012。
    14. C. Cui, B. M. Hu, L. Zhao, S. Liu, Titanium alloy production technology, market prospects and industry development, Materials and Design, 32(3), 2010, 1684-1691.
    15. 黃錦鐘,鈦及鈦合金的銲接-鈦的製法與鈦的性質,機械技術雜誌,1997,202-209。
    16. T. Pasang, Y. Tao, M. Azizi, O. Kamiya, M. Mizutani, W. Misiolek. Welding of titanium alloys, MATEC Web of Conferences, 123(1), 2017, 1-8.
    17. 日本工業標準,Handbook 2 非鐵材料,日本工業規格協會,1997。
    18. 洪胤庭,純鈦及鈦合金特性及製程介紹,中工高雄會刊,21(1),102,12-22。
    19. J. Matthew, Jr. Donachie, Titanium a technical guide, ASM International, Metals Park, USA, 1988.
    20. C. Leyens, M. Peters,鈦與鈦合金,陳振華譯,化學工業出版社,2005。
    21. http://www.newgreen.com.tw/Aluminum/Aluminum.html
    22. R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Materials science and engineering, 50, 2005, 1-78.
    23. Y. Li, L. Murr, J. Mcclure, Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum, Materials Science and Engineering: A, 271, 1999, 213-223.
    24. K. Elangovan, V. Balasubramanian, Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminum alloy, Materials & Design, 29(2), 2008, 362-373.
    25. M. A. Rojan, M. T.S.M. Sai, D. A. Hamid, A. Ismail, S. N.N. Zaina, M. Awang, I. M. Ikram, M. F. Makhtar, Experimental study on effect of welding parameters of friction stir welding (FSW) on aluminium AA5083 T-joint, Information Technology Journal, 15(4), 2016, 99-107.
    26. X.-L. Gao, L.-J. Zhang, J. Liu, J.-X. Zhang, A comparative study of pulsed Nd:YAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate, Materials Science and Engineering: A, 559, 2013, 14-21.
    27. K.C.Yung, B. Ralph, W. B. Lee, R. Fenn, An investigation into welding parameters affecting the tensile properties of titanium welds, Journal of Materials Processing Technology, 63(1–3), 1997, 759-764.
    28. A. Karpagaraj, N. Siva shanmugam, K. Sankaranarayanasamy, Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets, Materials Science and Engineering: A, 640, 2015, 180-189.
    29. N. Kahraman, M. Taşkın, B. Gulenc, A. Durgutlu, An investigation into the effect of welding current on the plasma arc welding of pure titanium, Kovove Mater, 48, 2010, 179-184.
    30. S. Sundaresan, G. D. J. Ram, G. M. Reddy, Microstructural refinement of weld fusion zones in α–β titanium alloys using pulsed current welding, Materials Science and Engineering, A262, 1999, 88-100.
    31. B. Mehdi, R. Badji, V. Ji, B. Allili, D. Bradai, F. Deschaux-Beaume, F. Soulié, Microstructure and residual stresses in Ti-6Al-4V alloy pulsed and unpulsed TIG welds, Journal of Materials Processing Technology, 231, 2016, 441-448.
    32. J. D. Kim, E. G. Jin, S. P. Murugan, Y. D. Park, Recent advances in friction-stir welding process and microstructural investigation of friction stir welded pure titanium, Journal of Welding and Joining, 35(4), 2017, 6-15.
    33. W. J. Arbegast, Friction stir joining: characteristic defects, Advanced Materials Processing Center MET, 6, 2003, 1-30.
    34. H. Fujii, Y. Sun, H. Kato, K. Nakata, Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints, Materials Science and Engineering: A, 527(15), 2010, 3386-3391.
    35. H. Liu, K. Nakata, N. Yamamoto, J. Liao, Friction stir welding of pure titanium lap joint, Science and Technology of Welding and Joining, 15(5), 2013, 428-432.
    36. Y. C. Chen, K. Nakata, Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys, Materials & Design, 30(3), 2009, 469-474.
    37. M. Yu, H. Zhao, Z. Jiang, Z. Zhang, F. Xu, L. Zhou, X. Song, Influence of welding parameters on interface evolution and mechanical properties of FSW Al/Ti lap joints, Journal of Materials Science & Technology, 35(8), 2019, 1543-1554.
    38. H. Zhao, M. Yu, Z. Jiang, L. Zhou, X. Song, Interfacial microstructure and mechanical properties of Al/Ti dissimilar joints fabricated via friction stir welding, Journal of Alloys and Compounds, 789, 2019, 139-149.
    39. J. W. Choi, H. Liu, H. Fujii, Dissimilar friction stir welding of pure Ti and pure Al, Materials Science and Engineering: A, 730, 2018, 168-176.
    40. U. Dressler, G. Biallas, U. Alfaro Mercado, Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3, Materials Science and Engineering: A, 526(1-2), 2009, 113-117.
    41. M. E. Fitzpatrick, A. T. Fry, P. Holdway, F. A. Kandil, J. Shackleton, L. Suominen, Determination of residual stress by X-ray diffraction, Issue2, National Physical Laboratory, Teddington, Middlesex, United Kingdom, 2002.
    42. 許樹恩、吳泰伯,X 光繞射原理與材料結構分析,第三版,中國材料科學學會,1997,396-397。
    43. 林麗娟,X 光繞射原理及其應用,工業材料,86期,1994,100-109。
    44. P. Staron1, M. Koçak1, S. Williams, Residual stresses in friction stir welded Al sheets, Applied Physics A: Materials Science & Processing, 74, 2002, 1161-1162.
    45. K.D. Ralstona, D. Fabijanica, N. Birbilis, Effect of grain size on corrosion of high purity aluminium, Electrochimica Acta, 56(4), 2011, 1729-1736.

    無法下載圖示 本全文未授權公開
    QR CODE