研究生: |
鄒敬瑋 Tsou, Ching-Wei |
---|---|
論文名稱: |
理論計算有機不對稱催化合成全取代四氫吡咯酮經由aza-Michael/Michael 加成反應 Theoretical Calculations for Organocatalytic Asymmetric Synthesis of Fully Substituted Pyrrolidinone via aza-Michael/Michael Addition Reaction |
指導教授: |
陳焜銘
Chen, Kwun-Min 蔡明剛 Tsai, Ming-Kang |
口試委員: |
陳焜銘
Chen, Kwun-Min 蔡明剛 Tsai, Ming-Kang 李文山 Li, Wen-Shan |
口試日期: | 2022/04/28 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 151 |
中文關鍵詞: | 反應機制 、立體選擇性 、高斯 16 、密度泛涵理論 、基底函數組 、甲苯 |
英文關鍵詞: | reaction mechanism, stereoselectivity, Gaussian 16, Density Functional Theory, basis sets, toluene |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202200632 |
論文種類: | 學術論文 |
相關次數: | 點閱:113 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
理論計算已於預測反應機制及立體選擇性中具有廣泛的研究與涉略,透過理論計算能幫助我們對於化學的微觀世界有更深層的了解。
本文的實驗部分是探討起始物與催化劑進行aza-Michael/Michael加成反應合成出全取代四氫吡咯酮形成過程的反應機制並與有機實驗結果做比較。本實驗使用的計算方法是以高斯16作為計算軟體,密度泛涵理論為原理,並搭配6-31G的基底函數組做計算。本反應因為涉及龐大的分子做反應,因此以WB97XD/6-31G做幾何優化 (含一次微分優化結構及二次微分做振動頻率的計算),設定反應在具有溶劑效應的甲苯中進行。
Theoretical calculations have been extensively studied and involved in predicting the reaction mechanism and stereoselectivity. Through theoretical calculations, we can gain a deeper understanding of the microscopic world of chemistry.
The experimental part of this paper is to discuss the reaction mechanism of the synthesis of fully substituted pyrrolidinone through aza-Michael/Michael addition reaction between the starting material and the catalyst and compare it with the organic experimental results. The calculation method used in this experiment is based on Gaussian 16 as the calculation software, the principle of Density Functional Theory, and the basis sets of 6-31G for calculation. Because this reaction involves huge molecules, WB97XD/6-31G is used for geometric optimization (including first-order differential optimization structure and second-order differential for vibration frequency calculation), and the reaction is set to be carried out in toluene with solvent effect.
1. Chan, R. S.; Ingold, C. K.; Prelog, V. Angew, Chem, Int, Ed. 1966, 5, 385.
2. Miller, M. T. Tr. Am. Ophth. Soc. 1991, 89, 623.
3. MacMillan, D. W. C. Nature, 2008, 455, 304.
4. Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713.
5. Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615.
6. Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem. Int. Ed. 1971, 10, 496.
7. Bahmanyar, S.; Houk, K. N. J. Am. Chem. Soc. 2001, 123, 12911.
8. List, B.; Hoang, L.; Martin, H. J. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5839.
9. List, B.; Lerner, R. A.; Barbas III, C. F. J. Am. Chem. Soc. 2000, 122, 2395.
10. Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.
11. Wang, W.; Li, H.; Wang, J.; Zu, L. J. Am. Chem. Soc. 2006, 128, 10354.
12. Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. C. Science. 2007, 316, 582.
13. Diez, D. et al. (2015): Sustainable Catalysis: Without Metals or Other Endangered Elements, Part 2. Los Angeles, Michael North.
14. Wu, S.; Zhu, G.; Wei, S.; Chen, H.; Qu, J.; Wang, B. Org. Biomol. Chem. 2018, 16, 807.
15. Yan, L. J.; Yan, Y. X.; Chen, X. B.; Wang, Y. C. Chin. J. Org. Chem. 2020, 40, 856.
16. Phillips, A. M. F.; Prechtl, M. H. G.; Pombeiro, A. J. L. Catalysts. 2021, 11, 569.
17. Takemoto, Y. J. Synth. Org. Chem., Jpn. 2006, 64, 1139.
18. Wang, S. G.; Liu, X. J.; Zhao, Q. C.; Zheng, C.; Wang, S. B.; You, S. L. Angew. Chem. Int. Ed. 2015, 54, 14929.
19. Chennapuram, M.; Owolabi, I. A.; Seki, C.; Okuyama, Y.; Kwon, E.; Uwai, K.; Tokiwa, M.; Takeshita, M.; Nakano, H. ACS Omega. 2018, 3, 11718.
20. Satheesh, M.; Balachandran, A. L.; Devi, P. R.; Deepthi, A. Synth. Commun. 2018, 48, 582.
21. Michael, A. J. Prakt . Chem. 1887, 35, 349.
22. Wang, X. F.; An, J.; Zhang, X. X.; Tan, F.; Chen, J. R.; Xiao, W. J. Org. Lett. 2011, 13, 808.
23. Halland, N.; Lie, M. A.; Kjærsgaard, A.; Marigo, M.; Schiøtt, B.; Jørgensen, K. A. Chem. Eur. J. 2005, 11, 7083.
24. Yu, P.; Li, W.; Houk, K. N. J. Org. Chem. 2017, 82, 6398.
25. Shorvon, S. The Lancet. 2001, 358, 1885.
26. Fiaux, H.; Kuntz, D. A.; Hoffman, D.; Janzer, R. C.; Lemaire, S. G.; Rose, D. R.; Jeanneret, L. J. Bioorg. Med. Chem. 2008, 16, 7337.
27. Yokosaka, T.; Hamajima, A.; Nemoto, T.; Hamada, Y. Tetrahedron Letters. 2012, 53, 1245.
28. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
29. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 137, A1697.
30. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
31. Foresman, J. B.; Frisch, Æ. (1996) Exploring Chemistry with Electronic Structure Methods - 2nd edition. Pittsburgh, PA, Gaussian, Inc.
32. Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032.
33. Chai, J. D.; Gordon, M. H. Phys. Chem. Chem. Phys. 2008, 10, 6615.
34. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972 ,56, 2257.
35. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1971, 54, 724.
36. Gurubrahamam, R.; Gao, B. F.; Chen, Y. M.; Chan, Y. T.; Tsai, M. K.; Chen, K. M. Org. Lett. 2016, 18, 3098.
37. 李軍霖 (2021)。 《動力學分割之富馬酸醯胺酯和硝基苯乙烯衍生物製備多取代吡咯烷酮衍生物》。 國立臺灣師範大學化學研究所碩士論文,未出版,臺北市。