簡易檢索 / 詳目顯示

研究生: 陳思予
Szu-Yu Chen
論文名稱: 改良式本質模態分解法在訊號處理之應用
Reformed Intrinsic Mode Decomposition and its Application for Signal Processing
指導教授: 吳順德
Wu, Shuen-De
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 85
中文關鍵詞: 改良式本質模態分解法經驗模態分解法片段式線性非穩態訊號雜訊濾除
英文關鍵詞: reformed intrinsic mode decomposition, empirical mode decomposition, piecewise linear, non-stationary signals, signal de-noising
論文種類: 學術論文
相關次數: 點閱:236下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 訊號處理在科學以及工程領域上皆是很重要的課題。自然界的訊號,大多都是非穩態(時變)、非線性過程,故往往得到的訊息包含了雜訊的部分。傳統的傅立葉轉換,其處理的訊號限制為:線性、穩態過程,所以並不能處理大部分的訊號特性。經驗模態分解法(Empirical Mode Decomposition, EMD)對於非線性、非穩態訊號提供一種多尺度、適應性的解析方式,這個方法大大改善了上述的限制。本論文針對多位學者提出此演算法三大課題的改進方式:停止準則、包絡線與邊界效應,作歸納與比較。另外,簡單介紹有關EMD基底的正交性條件、分解上的限制以及基底重建問題。針對文獻提到片段式線性訊號的研究,啟發了本論文對改良式本質模態分解法(Reformed Intrinsic Mode Decomposition, RIMD)的靈感,而片段式線性之概念最大的特點是可以得到較快速的分解法。本研究利用此概念求得之中值點建立出包絡線均值,並對真實訊號之應用上提出以下的方法:以立方雲線聯結中值點;以原始訊號的比例大小聯結中值點,找出包絡線均值。改良式本質模態分解法不但能大大降低演算法的計算量,並且減少在邊界效應極值點選取上之考量,這將會使得訊號在篩選程序中之平穩性以及對稱性大幅的提升。最後,以模擬以及測試訊號透過改良式本質模態分解法拆解出之結果,進行試驗結果之分析與討論。

    Signal processing is very important for science and engineering researches. Real world signals are often noisy, non-stationary, and obtained from nonlinear systems. However, the majority of signal processing algorithms proposed in the literature such as Fourier transform are better suited for analyzing the linear stationary signals with weak noise. Empirical Mode Decomposition (EMD) provides a powerful tool for adaptive multi-scale analysis of nonlinear and non-stationary signals. In this thesis, the proposed improvement way of three main topics on the algorithm, stopping criterion, envelope and boundary effect, were summarized and compared. In addition, we make a brief introduction involving orthogonality condition of basis functions, the limitation of decomposition capacity and reconstruction issue of basis functions. It inspired us to propose the Reformed Intrinsic Mode Decomposition (RIMD) by the study of piecewise linear signals in the literature. The best feature of piecewise linear processing is to obtain the faster decomposition efficiency. In this study, we utilize this notion to get middle points and then establish the mean envelope, and propose following methods for the application of real signals: connecting middle points by cubic spline, connecting middle points by the propotion of the original signal, and finding the mean envelope. RIMD is not only reducing the computational cost but also decreasing the selection of extrema for the boundary effect. It will make signals smoother and more symmetric in the sifting process. At last, the results of decomposition using RIMD for the simulated and testing signals were analysized and discussed.

    誌謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 序論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目標 4 1.4 論文架構 4 第二章 經驗模態分解法 6 2.1 演算法 6 2.1.1 本質模態函數 7 2.1.2 篩選程序 9 2.2 間歇性雜訊問題 10 2.2.1 間歇性準則 11 2.2.2 整體經驗模態分解法 11 2.3 經驗模態分解法之相關問題 12 2.3.1 分解上的限制 12 2.3.2 正交條件 13 2.4 經驗模態分解法之雜訊濾除比較 14 第三章 評估與規劃經驗模態分解法之演算法 17 3.1 主要議題 17 3.1.1 停止準則 17 3.1.2 包絡線 22 3.1.3 邊界效應 28 3.2 本質模態函數之相關研究 33 3.2.1 最佳訊號重建 33 3.2.2 本值模態熵 34 3.3 改良式本質模態分解法之構想 34 第四章 改良式本質模態分解法之架構與分析結果 38 4.1 改良式本質模態分解法 38 4.1.1 演算法 38 4.1.2 極值點選取與邊界點處理 41 4.2 模擬訊號分析 43 4.2.1 平穩訊號 43 4.2.2 非平穩訊號 47 4.2.3 小結 57 4.3 測試訊號分析 58 4.3.1 大棕蝙蝠音訊檔 58 4.3.2 基準線飄移心電訊號 61 4.3.3 MIT-BIH波形資料庫檔案 66 4.3.4 小結 70 第五章 結論 71 5.1 本論文之貢獻 71 5.2 未來展望 71 參考文獻 72

    【1】B. Weng, M. Blanco-Velasco and K.E. Barner, “ECG Denoising Based on the Empirical Mode Decomposition”, IEEE International Conference on Engineering in Medicine and Biology Society EMBS 2006, New York, USA, 30 Aug.-3 Sep. 2006, pp. 1-4.

    【2】V. Kamath, Y.C. Lai and L. Zhu, “Empirical Mode Decomposition and Blind Source Separation Methods for Antijamming with GPS Signals”, IEEE/ION Position, Location, and Navigation Symposium PLANS 2006, San Diego, California, USA, 25-27 Apr. 2006, pp. 335-341.

    【3】R. Srinivasan, R. Rengaswamy and R. Miller, “A Modified Empirical Mode Decomposition (EMD) Process for Oscillation Characterization in Control Loops”, Control Engineering Practice, vol. 15, issue 9, Sep. 2007, pp. 1135-1148.

    【4】K. Khaldi, A.O. Boudraa, A. Bouchikhi, M.T.H. Alouane and E.H.S. Diop, ”Speech Signal Noise Reduction by EMD”, IEEE International Symposium on Communications, Control and Signal Processing ISCCSP 2008, St. Julians, Malta, 12-14 Mar. 2008, pp. 1155-1158.

    【5】Y.X. Huang, F.G. Schmitt, Z.M. Lu and Y.L. Liu, “An Amplitude-Frequency Study of Turbulent Scaling Intermittency Using Empirical Mode Decomposition and Hilbert Spectral Analysis”, Europhysics Letters EPL, vol. 84, no. 4, 14 Nov. 2008, 40010 pp. 1-6.

    【6】J.F. Khan, R.R. Adhami, S.M.A. Bhuiyan and K.E. Barner, “Empirical Mode Decomposition Based Interest Point Detector”, IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2008, Las Vegas, Nevada, USA, 30 Mar.-4 Apr. 2008, pp. 1317-1320.

    【7】J.N. Yang, Y. Lei, S.W. Pan and N.E. Huang, “System Identification of Linear Structures Based on Hilbert-Huang Spectral Analysis Part1: Normal Modes” Earthquake Engineering and Structural Dynamics, vol. 32, issue 9, 9 May 2003, pp. 1443-1467.

    【8】R.Q. Yan and R.X. Gao, “Hilbert-Huang Transform-Based Vibration Signal Analysis for Machine Health Monitoring”, IEEE Transaction on Instrumentation and Measurement, vol. 55, no. 6, Dec. 2006, pp. 2320-2329.

    【9】N. Senroy, “Generator Coherency Using the Hilbert-Huang Transform”, IEEE Transaction on Power Systems, vol. 23, no. 4, Nov. 2008, pp. 1701-1708.

    【10】N.E. Huang, M.L.C. Wu, S.R. Long, S.S.P. Shen, W.D. Qu, P. Gloersen and K.L. Fan, “A Confidence Limit for the Empirical Mode Decomposition and Hilbert Spectrum Analysis”, Proceedings of the Royal Society of London Series A, vol. 459, no. 2037, 8 Sep. 2003, pp. 2317-2345.

    【11】N.E. Huang, Z. Shen, S.R. Long, M.L.C. Wu, H.H. Shih, Q.N. Zheng, N.C. Yen, C.C. Tung and H.H. Liu, “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non- stationary Time Series Analysis”, Proceedings of the Royal Society of London Series A, vol. 454, no. 1971, 8 Mar. 1998, pp. 903-995.

    【12】R.M. Rao and A.S. Bopardikar, Wavelet Transforms: Introduction to Theory and Applications, Addison-Wesley, 1998.

    【13】R.C. Gonzalez and R.E. Woods, Digital Image Processing, 2/e, Prentice-Hall, 2002.

    【14】H.G. Stark, Wavelets and Signal Processing: An Application-Based Introduction, Springer-Verlag, 2005.

    【15】P. Flandrin, G. Rilling and P. Gonçalvés, “Empirical Mode Decomposition as a Filter Bank”, IEEE Signal Processing Letters, vol. 11, no. 2, Feb. 2004, pp.112-114.

    【16】P. Flandrin and P. Gonçalvés, “Empirical Mode Decomposition as Data-Driven Wavelet-Like Expansions”, International Journal of Wavelets, Multi-resolution and Information Processing IJWMIP, vol. 2, issue 4, Dec. 2004, pp. 477-496.

    【17】Z.H. Wu and N.E. Huang, “Ensemble Empirical Mode Decomposition: A Noise Assisted Data Analysis Method”, COLA Technical Report 193, Aug. 2005, pp. 1-49.

    【18】G. Rilling and P. Flandrin, “One or Two Frequency? The Empirical Mode Decomposition Answers”, IEEE Transaction on Signal Processing, vol. 56, no.1, Jan. 2008, pp. 85-95.

    【19】http://en.wikipedia.org/wiki/File:Standard_deviation_ diagram.svg

    【20】M.C. Peel, G.E. Amirthanathan, G.G.S. Pegram, T.A. McMahon and F.H.S. Chiew, “Issue with the Application of Empirical Mode Decomposition Analysis”, MODSIM 2005 International Congress on Modelling and Simulation, Melbourne, Australia, 12-15 Dec. 2005, pp. 1681-1687.

    【21】R.T. Rato, M.D. Ortigueira and A.G. Batista, “On the HHT, Its Problems, and Some Solutions”, Mechanical Systems and Signal Processing, vol. 22, issue 6, Aug. 2008, pp. 1374-1394.

    【22】G. Rilling, P. Flandrin and P. Gonçalvés, “On Empirical Mode Decomposition and Its Algorithms”, IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado, Italy, 8-11 Jun. 2003.

    【23】J.S. Cheng, D.J. Yu and Y. Yang, “Research on the Intrinsic Mode Function (IMF) Criterion in EMD Method”, Mechanical Systems and Signal Processing, vol. 20, issue 4, May 2006, pp. 817-824.

    【24】B. Xuan, Q.W. Xie and S.L. Peng, “EMD Sifting Based on Bandwidth”, IEEE Signal Processing Letters, vol. 14, no. 8, Aug. 2007, pp. 537-540.

    【25】Q.H. Chen, N.E. Huang, S. Riemenschneider and Y.S. Xu, “A B-Spline Approach for Empirical Mode Decompositions”, Advances in Computational Mathematics, vol. 24, no. 1-4, Jan. 2006, pp. 171-195.

    【26】L.Y. Lu, “Fast Intrinsic Mode Decomposition of Time Series Data with Sawtooth Transform”, ORACLE Technical Report, Nov. 2007, pp. 1-13.

    【27】G.G.S. Pegram, M.C. Peel and T.A. McMahon,“Empirical Mode Decomposition Using Rational Splines: An Application to Rainfall Time Series”, Proceedings of the Royal Society A, vol. 464, no. 2094, 8 Jun. 2008, pp. 1483-1501.

    【28】Y. Kopsinis and S. McLaughlin, “Investigation and Performance Enhancement of the Empirical Mode Decomposition on a Heuristic Search Optimization Approach”, IEEE Transaction on Signal Processing, vol. 56, no.1, Jan. 2008, pp. 1-13.

    【29】Y. Kopsinis and S. McLaughlin, “Improve EMD Using Doubly- Iterative Sifting and High Order Spline Interpolation”, Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing, vol. 2008, article ID 128293, Jan. 2008, pp. 1-8.

    【30】S.D. Hawley, L.E. Atlas and H.J. Chizeck, “Some Properties of an Empirical Mode Type Signal Decomposition Algorithm”, IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2008, Las Vegas, Nevada, USA, 30 Mar.-4 Apr. 2008, pp. 3625-3628.

    【31】Z. Xu, B. Huang and S. Xu, “Exact Location of Extrema for Empirical Mode Decomposition”, Electronics Letters, vol. 44, no. 8, 10 Apr. 2008, pp. 551-552.

    【32】Y.J. Deng, W. Wang, C.C. Qian, Z. Wang and D.J. Dai, ”Boundary- Processing-Technique in EMD Method and Hilbert Transform”, Chinese Science Bulletin, vol. 46, no. 1, Jan. 2001, pp. 954-960.

    【33】J.P. Zhao and D.J. Huang, “Mirror Extending and Circular Spline Function for Empirical Mode Decomposition Method”, Journal of Zhejiang University, Science, vol. 2, no.3, July-Sep. 2001, pp. 247-252.

    【34】K. Zeng and M.X. He, “A Simple Boundary Process Technique for Empirical Mode Decomposition”, IEEE International Geoscience and Remote Sensing Symposium IGARSS '04, vol. 6, Anchorage, AK, USA, 20-24 Sep. 2004, pp. 4258-4261.

    【35】Z.D. Zhao and Y. Wang, “A New Method for Processing End Effect in Empirical Mode Decomposition”, IEEE International Conference on Circuits and Systems for Communications ICCSC 2007, Kokura, Japan, 11-13 July 2007, pp. 841-845.

    【36】J. Wang, Y. Peng and X. Peng, ”Similarity Searching Based Boundary Effect Processing Method for Empirical Mode Decomposition”, Electronics Letters, vol. 43, no. 1, 4 Jan. 2007, pp. 58-59.

    【37】任達千、吳昭同與嚴拱標,「EMD端點效應的評價指標及抑制端點效應的窗函數法」,製造業自動化,第29卷,第1期,民國96年1月,頁21-24。

    【38】B. Weng and K.E. Barner, “Optimal Signal Reconstruction Using the Empirical Mode Decomposition”, Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing, vol. 2008, article ID 845294, Jan. 2008, pp. 1-12.

    【39】H. Amoud, H. Snoussi, D. Hewson, M. Doussot and J. Duchêne, “Intrinsic Mode Entropy for Nonlinear Discriminant Analysis”, IEEE Signal Processing Letters, vol. 14, no. 5, May 2005, pp. 297-300.

    【40】M.G. Frei and I. Osorio, “Intrinsic Time-Scale Decomposition: Time- Frequency-Energy Analysis and Real-Time Filtering of Non-stationary Signals”, Proceedings of the Royal Society A, vol. 463, no. 2078, 8 Feb. 2007, pp. 321-342.

    【41】S. Kizhner, K. Blank, T. Flatley, N.E. Huang, D. Petrick and P. Hestnes, “On Certain Theoretical Developments Underlying the Hilbert-Huang Transform”, 2006 IEEE Aerospace Conference, Big Sky, Montana, USA, 4-11 Mar. 2006, pp. 1-14.

    【42】http://www.physionet.org/physiobank/database/mitdb/

    【43】http://www.physionet.org/physiobank/database/html/ mitdbdir/records.htm

    下載圖示
    QR CODE